首页> 外文学位 >Design, modeling, and analysis of networks-on-chip for systems-on-chip .
【24h】

Design, modeling, and analysis of networks-on-chip for systems-on-chip .

机译:片上系统的片上网络的设计,建模和分析。

获取原文
获取原文并翻译 | 示例

摘要

Systems-on-Chip (SoCs) are attractive platforms for embedded computing, because integrating a system or a complex subsystem on a single chip provides better performance, reliability, and cost per function. The performance of an SoC is decided not only by the performance of functional units composing it but also by the efficiency with which these functional units communicate. It is the SoC's communication architecture which decides the cooperation efficiency. As the complexity of SoCs increases, on-chip communication cost also increases, and low power management requires more flexible communication schemes. Furthermore, over each technology generation, while shrinking feature sizes reduce gate delays exponentially, global wire delays increase exponentially at the same time. This work studies the communication subsystems of SoCs and their codesign with computation and memory subsystems. First, we proposed a novel on-chip communication architecture, the Application-Specific Network-on-Chip (ASNoC). ASNoCs achieve higher performance and lower cost than regular-topology Networks-on-Chip (NoCs) by using hierarchies, irregular topologies, floorplan estimation, and selected protocols. We proposed a systematic ASNoC design methodologies, compatible with current hardware/software codesign flows. Using the methodology, we designed ASNoCs for two SoCs. Results show that the ASNoCs offer significantly higher performance and lower cost than regular-topology NoCs. Second, we proposed a general design methodology for on-chip communication architectures. Our methodology formalizes on-chip communication architecture designs; it can design, model, and analyze all types of on-chip communication architectures. Different communication architectures can be designed at the same time and evaluated based on the same standard. Using this methodology, we designed and compared bus-based and crossbar-based architectures for an SoC in the 130 nm technology. Third, we proposed a novel on-chip interconnection structure, called wave-pipelined interconnection. Wave-pipelined interconnection is pipelined without using latches. It uses less power and delivers a much higher throughput. It is suitable for globally asynchronous and locally synchronous clock schemes. In the 70 nm technology, wave-pipelined interconnection achieves 10 GHz and an 80 Gbps throughput, and eliminates 88% of delay variations caused by crosstalk noise.
机译:片上系统(SoC)是用于嵌入式计算的有吸引力的平台,因为将系统或复杂子系统集成在单个芯片上可提供更好的性能,可靠性和每功能成本。 SoC的性能不仅取决于组成它的功能单元的性能,还取决于这些功能单元通信的效率。 SoC的通信体系结构决定了协作效率。随着SoC的复杂性增加,片上通信成本也增加,并且低功耗管理需要更灵活的通信方案。此外,在每一代技术上,缩小的特征尺寸会以指数方式减少门延迟,而整体布线延迟会同时以指数方式增加。这项工作研究了SoC的通信子系统及其与计算和内存子系统的代码关系。首先,我们提出了一种新颖的片上通信架构,即专用芯片网络(ASNoC)。通过使用层次结构,不规则拓扑,平面布置图估计和选定的协议,ASNoC可以比常规拓扑片上网络(NoC)实现更高的性能和更低的成本。我们提出了系统的ASNoC设计方法,与当前的硬件/软件代码签名流程兼容。使用该方法,我们为两个SoC设计了ASNoC。结果表明,ASNoC比常规拓扑NoC具有更高的性能和更低的成本。其次,我们提出了一种片上通信架构的通用设计方法。我们的方法使片上通信架构设计正式化;它可以设计,建模和分析所有类型的片上通信体系结构。可以同时设计不同的通信体系结构,并根据相同的标准进行评估。使用这种方法,我们为130 nm技术中的SoC设计并比较了基于总线和基于交叉开关的架构。第三,我们提出了一种新颖的片上互连结构,称为波导管互连。波形流水线互连无需使用锁存器即可流水线化。它使用更少的功率,并提供更高的吞吐量。它适用于全局异步和本地同步时钟方案。在70 nm技术中,流水线互连可实现10 GHz和80 Gbps吞吐量,并消除了88%的串扰噪声引起的延迟变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号