首页> 外文学位 >Improving electrophoretic resolution in microfabricated bioanalysis devices.
【24h】

Improving electrophoretic resolution in microfabricated bioanalysis devices.

机译:在微型生物分析设备中提高电泳分辨率。

获取原文
获取原文并翻译 | 示例

摘要

Microfabrication is a technology initially used by semiconductor manufacturing industries. With this technique, multiple components can be integrated on one cm²-sized chip and used as a micro-bioanalysis platform. Electrophoresis separation using polyacrylamide is one particular component of such a bioanalysis system that has been widely applied in gene analysis, mutation detection, disease diagnosis and forensic screening. A major concern for a micro-separation is the resolution loss due to shorter separation distances in comparison with conventional slab-gel or capillary systems. This thesis work focuses on improving separation resolution for a miniaturized device by both experimental measures and theoretical studies.; First, we have improved separation resolution for both ssDNA and dsDNA in a microfabricated DNA device by continuously flowing 1X TBE buffer over the electrodes at the cathodic end. Resolution for ssDNA primer separations has been increased about 4 times higher than that without a flow in a separation distance of 1.2cm. DNA electrophoretic behavior in microchannels has been studied with a transverse detection using confocal microscopy. A strong position-dependent distribution of DNA migration was found, and the distribution evolved with DNA migration distance from an initial center-biased distribution to a later top-and-bottom-biased distribution; indicating an unique interaction between a rigid rod-like molecule and a low-elastic fixed network, whose average pore size is much smaller than the axial dimension of the molecule.; A coarse-grained model was used to simulate ssDNA electrophoretic mobility and corresponding band broadening in a crosslinked or entangled network. Simulated mobility results showed a smooth transition from reptation to oriented reptation regime. With dimensionless numbers reflecting experimental conditions and physical properties, we were able to convert the simulated results into comparable experimental results for chains with 8 to 50 entanglements respectively (around 1500 to 8500 bases).; These studies suggest optimal process conditions for DNA separation in a micro-device, either by modifying the device design or understanding detailed mechanisms. In the future, an optimized micro-separation system can be designed for the applications of both genotyping and sequencing.
机译:微细加工是半导体制造行业最初使用的技术。利用这种技术,可以将多个组件集成到一个平方厘米大小的芯片上,并用作微生物分析平台。使用聚丙烯酰胺的电泳分离是这种生物分析系统的特定组成部分,该系统已广泛应用于基因分析,突变检测,疾病诊断和法医筛查。微分离的主要问题是与传统的平板凝胶或毛细管系统相比,由于分离距离较短而导致的分离度损失。本文的工作重点是通过实验方法和理论研究来提高小型设备的分离分辨率。首先,通过使1X TBE缓冲液连续流过阴极末端的电极,我们提高了微细化DNA设备中ssDNA和dsDNA的分离分辨率。 ssDNA引物分离的分辨率比无流动的1.2厘米提高了约4倍。使用共聚焦显微镜通过横向检测研究了微通道中的DNA电泳行为。发现了一个强烈的位置依赖性的DNA迁移分布,并且该分布随DNA迁移距离从初始的中心偏态分布到后来的上下偏态分布而演化。表明刚性棒状分子与低弹性固定网络之间的独特相互作用,其平均孔径远小于分子的轴向尺寸。粗粒度模型用于模拟ssDNA电泳迁移率和在交联或纠缠网络中的相应谱带展宽。模拟的流动性结果显示了从重复到定向重复机制的平稳过渡。用无量纲的数字反映实验条件和物理性质,我们能够将模拟结果转换为分别具有8至50个纠缠度(约1500至8500个碱基)的链的可比较实验结果。这些研究建议通过修改设备设计或了解详细的机制,为微设备中的DNA分离提供最佳工艺条件。将来,可以为基因分型和测序应用设计优化的微分离系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号