首页> 外文学位 >Heat transport in silicon microchannel arrays.
【24h】

Heat transport in silicon microchannel arrays.

机译:硅微通道阵列中的热传递。

获取原文
获取原文并翻译 | 示例

摘要

Investigations are conducted to understand the heat transport and fluid flow mechanisms in microchannel heat sinks. Single-phase experiments are performed with copper microchannels to explore the validity of classical correlations based on conventional-sized channels for predicting the heat transfer behavior in single-phase flow through rectangular microchannels. Numerical predictions obtained from computational fluid dynamics (CFD) analyses of the three-dimensional conjugate heat transfer process in a microchannel heat sink under classical, continuum assumptions were found to be in good agreement with the experimental data, suggesting that a conventional analysis approach can be employed in predicting heat transfer behavior in microchannels if the entrance and boundary conditions are correctly matched. In addition, simplified numerical analyses are conducted for laminar thermally developing flow in rectangular microchannels of various aspect ratios under circumferentially uniform wall temperature and axially uniform wall heat flux thermal boundary conditions. Based on the numerical results obtained, generalized correlations for predicting Nusselt numbers, useful for the design and optimization of microchannel heat sinks and other microfluidic devices, are proposed.; Flow boiling in arrays of parallel microchannels is investigated using a silicon test piece with imbedded discrete heat sources and integrated local temperature sensors. Twenty five microsensors integrated into the microchannel heat sinks allow for accurate local temperature measurements and the determination of local heat transfer coefficients over the entire test piece. The experimental results have allowed a critical assessment of the applicability of existing models and correlations in predicting the heat transfer rates and pressure drops in microchannel arrays, and have led to the development of models for predicting the two-phase pressure drop and saturated boiling heat transfer coefficient.
机译:进行调查以了解微通道散热器中的热传递和流体流动机理。使用铜微通道进行单相实验,以探索基于常规尺寸通道的经典相关性的有效性,以预测矩形微通道在单相流中的传热行为。在经典的,连续的假设下,通过对微通道散热器中三维共轭传热过程的计算流体动力学(CFD)分析获得的数值预测被发现与实验数据吻合良好,这表明可以采用常规分析方法如果入口和边界条件正确匹配,则可用于预测微通道中的传热行为。另外,在周向均匀的壁温和轴向均匀的壁热通量热边界条件下,对具有不同纵横比的矩形微通道中的层状热发展流动进行了简化的数值分析。基于获得的数值结果,提出了用于预测努塞尔数的广义相关性,对微通道散热器和其他微流体装置的设计和优化非常有用。使用带有嵌入式离散热源和集成本地温度传感器的硅测试件,研究了平行微通道阵列中的沸腾现象。集成到微通道散热器中的二十五个微传感器可以进行精确的局部温度测量,并确定整个测试片上的局部传热系数。实验结果允许对现有模型的适用性及其在预测微通道阵列中的传热速率和压降方面的相关性进行严格评估,并导致了用于预测两相压降和饱和沸腾传热的模型的开发。系数。

著录项

  • 作者

    Lee, Poh-Seng.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号