首页> 外文学位 >Optical and electronic properties, nanoscale structural order, and transformation kinetics of phase change materials.
【24h】

Optical and electronic properties, nanoscale structural order, and transformation kinetics of phase change materials.

机译:相变材料的光学和电子特性,纳米级结构顺序和相变动力学。

获取原文
获取原文并翻译 | 示例

摘要

Phase change materials like Ge-Sb-Te and Ag-In-Sb-Te exhibit rapid and reversible amorphous-to-crystalline phase changes. The dramatic and controllable change in optical reflectivity and electrical conductivity is the basis of rewritable optical discs (CD-RW, DVD+/-RW, etc.) and nonvolatile phase change random access memories (PCRAMs). The fundamental understanding of these materials will serve as a much-needed roadmap for the efficient development of the technologies. This dissertation reveals various basic properties of these materials and the relationship between the transformation speed and nanoscale structural order. We determined that the optical bandgaps of the amorphous, FCC, and hexagonal phases of Ge2Sb2Te 5 are 0.7, 0.5, and 0.5 eV, respectively. The crystalline phases have a high concentration of holes down to ∼5 K, which implies that the Fermi level resides inside a band. The Hall coefficient of hexagonal phase at high temperatures is decided by both holes and electrons, even if it is p-type. Ge2Sb2Te5 also has a strong tendency to oxidize by a prolonged light illumination.;One long standing puzzle was that, for a fixed composition, there may be different amorphous states that have greatly different crystallization kinetics. We provided clear evidence for the existence of nanoscale structural order in all amorphous states of Ge2Sb2Te5 and AgInSbTe, using Fluctuation electron microscopy (FEM) carried out in the transmission electron microscope. The nanoscale order is higher in the thermally annealed amorphous states than in the as-deposited (sputtered) state. Higher nanoscale order corresponds to more or larger ordered regions; then the structure has a greater probability to have supercritical nuclei that later grow into crystalline grains. The crystallization speeds of the annealed states are indeed higher than that of the as-deposited states. The greatly different effects of annealing on Ge2Sb2Te5 and AgInSbTe were explained by the difference in the nucleation rates. We also demonstrated that melt-quenched amorphous Ge2Sb2Te5 has clearly indexable crystalline particles of several nanometers, in addition to the amorphous matrix with high nanoscale order; the nanoparticles can act as supercritical nuclei that result in an order of magnitude faster crystallization.
机译:诸如Ge-Sb-Te和Ag-In-Sb-Te之类的相变材料表现出快速且可逆的非晶-晶体相变。光反射率和电导率的急剧变化和可控变化是可擦写光盘(CD-RW,DVD +/- RW等)和非易失性相变随机存取存储器(PCRAM)的基础。对这些材料的基本理解将成为有效开发技术的急需路线图。本文揭示了这些材料的各种基本性能,以及其转变速度与纳米级结构顺序之间的关系。我们确定Ge2Sb2Te 5的非晶相,FCC和六方相的光学带隙分别为0.7、0.5和0.5 eV。结晶相具有低至约5 K的高空穴浓度,这表明费米能级位于能带内。即使是p型,高温下六角相的霍尔系数也由空穴和电子共同决定。 Ge2Sb2Te5在长时间的光照下也具有很强的氧化趋势。一个长期存在的难题是,对于固定的成分,可能存在不同的非晶态,而这些非晶态具有不同的结晶动力学。我们使用透射电子显微镜进行的波动电子显微镜(FEM),为Ge2Sb2Te5和AgInSbTe的所有非晶态中存在纳米级结构有序提供了明确的证据。在热退火的非晶态下,纳米级的阶数要比沉积(溅射)态下的纳米级的阶数高。更高的纳米级有序对应于更多或更大的有序区域。则该结构更有可能具有超临界核,后来又长成晶粒。退火态的结晶速度确实高于沉积态的结晶速度。退火对Ge2Sb2Te5和AgInSbTe的影响大不相同,这是由于成核速率的差异所致。我们还证明,除了具有高纳米级的无定形基体之外,熔融淬火的无定形Ge2Sb2Te5还具有可清晰索引的几纳米的结晶颗粒。纳米粒子可以充当超临界核,从而导致更快的结晶速度。

著录项

  • 作者

    Lee, Bong-Sub.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号