首页> 外文学位 >Controlled fabrication of aligned carbon nanotube architectures for microelectronics packaging applications.
【24h】

Controlled fabrication of aligned carbon nanotube architectures for microelectronics packaging applications.

机译:用于微电子封装应用的对准碳纳米管体系结构的受控制造。

获取原文
获取原文并翻译 | 示例

摘要

As IC performance increases, many technical challenges appear such as thermal management, electrical interconnects, and thermal-mechanical reliability. To address these problems, carbon nanotubes (CNTs) were proposed in IC packaging for electrical interconnects and thermal management, due to their excellent electrical, thermal, and mechanical properties. CNTs promise to bring revolutionary improvement in reducing the interconnect pitch size, increasing thermal conductivity, and enhancing system reliability.; This thesis is devoted to the fabrication of carbon nanotube structures for microelectronics packaging applications with an emphasis on fundamental studies of nanotube growth and assembly, wetting of nanotube structures, and nanotube-based composites. A CVD process is developed that allows controlled growth of a variety of CNT structures, such as CNT films, bundles, and stacks. Use of an Al2O3 support enhances the Fe catalyst activity by increasing the CNT growth rate by nearly two orders of magnitude under the same growth conditions. By introducing a trace amount of weak oxidants into the CVD chamber during CNT growth, aligned CNT ends can be opened and/or functionalized, depending on the selection of oxidants. By varying the growth temperature, CNT growth can be performed in a gas diffusion- or kinetics-controlled regime.; To overcome the challenges that impede implementation of CNTs in circuitry, a CNT transfer process was proposed to assemble aligned CNT structures (films, stacks & bundles) at low temperature which ensures compatibility with current microelectronics fabrication sequences and technology. Field emission and electrical testing of the as-assembled CNT devices indicate good electrical contact between CNTs and solder and a very low contact resistance across CNT/solder interfaces. For attachment of CNTs and other applications (e.g. composites), wetting of nanotube structures was studied. Two model surfaces with two-tier scale roughness were fabricated by controlled growth of CNT arrays followed by coating with fluorocarbon layers formed by plasma polymerization to study roughness geometric effects on superhydrophobicity. Due to the hydrophobicity of nanotube structures, electrowetting was investigated to reduce the hydrophobicity of aligned CNTs by controllably reducing the interfacial tension between carbon nanotubes (CNTs) and liquids. Electrowetting can greatly reduce the contact angle of liquids on the surfaces of aligned CNT films. However, contact angle saturation still occurs.; Variable frequency microwave (VFM) radiation can greatly improve the CNT/epoxy interfacial bonding strength. Compared to composites cured by thermal heating, VFM-cured composites demonstrate higher CNT/matrix interfacial bonding strength, which is reflected in composite negative thermal expansion. The improved CNT/epoxy interface enhances the thermal conductivity of the composites by 26-30%.
机译:随着IC性能的提高,出现了许多技术挑战,例如热管理,电气互连和热机械可靠性。为了解决这些问题,由于碳纳米管具有出色的电,热和机械性能,因此在IC封装中提出了用于电互连和热管理的碳纳米管。碳纳米管有望在减小互连间距,增加导热性和增强系统可靠性方面带来革命性的改进。本文致力于微电子封装应用的碳纳米管结构的制造,重点是对纳米管生长和组装,纳米管结构的润湿以及基于纳米管的复合材料的基础研究。已开发出一种CVD工艺,该工艺可以控制各种CNT结构的生长,例如CNT薄膜,束和堆叠。通过在相同的生长条件下将CNT的生长速率提高近两个数量级,可以使用Al2O3载体来增强Fe催化剂的活性。通过在CNT生长过程中将微量的弱氧化剂引入CVD室,可以根据氧化剂的选择来打开和/或功能化对齐的CNT末端。通过改变生长温度,可以在气体扩散或动力学控制的状态下进行CNT的生长。为了克服阻碍在电路中实现CNT的挑战,有人提出了CNT转移工艺来在低温下组装对齐的CNT结构(膜,叠层和束),以确保与当前的微电子制造顺序和技术兼容。组装后的CNT器件的场发射和电测试表明,CNT与焊料之间的电接触良好,并且CNT /焊料界面的接触电阻非常低。为了附着CNT和其他应用(例如复合材料),研究了纳米管结构的润湿。通过控制碳纳米管阵列的生长,然后涂覆由等离子体聚合形成的碳氟化合物层,来制造具有两层尺度粗糙度的两个模型表面,以研究粗糙度对超疏水性的​​几何影响。由于纳米管结构的疏水性,研究了电润湿以通过可控地降低碳纳米管(CNT)与液体之间的界面张力来降低排列的CNT的疏水性。电润湿可以极大地减小液体在对准的CNT膜表面上的接触角。但是,仍然会发生接触角饱和。可变频率微波(VFM)辐射可以大大提高CNT /环氧树脂界面的结合强度。与通过热固化的复合材料相比,VFM固化的复合材料显示出更高的CNT /基体界面结合强度,这反映在复合材料的负热膨胀中。改进的CNT /环氧树脂界面将复合材料的导热率提高了26-30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号