首页> 外文学位 >Enhanced laboratory production of a pharmaceutical precursor through transposon mutagenesis.
【24h】

Enhanced laboratory production of a pharmaceutical precursor through transposon mutagenesis.

机译:通过转座子诱变增强了药物前体的实验室生产。

获取原文
获取原文并翻译 | 示例

摘要

Directed evolution enhances biological phenotypes with wide-ranging applications for pharmaceuticals and biotechnology. In the laboratory, scientists regularly engineer organisms for specific purposes, such as the biosynthesis of biologics. This type of purpose-driven engineering typically involves targeted manipulations of known cellular processes (metabolic engineering) or the creation and subsequent screening of mutant libraries (strain improvement).; We created a library of E. coli mutants with transposon insertions and screened this library for increased titers of 6-deoxyerythronolide B (6dEB), a precursor of the antibiotic erythromycin. The screen of over two thousand mutants identified a strain that showed around a two-fold increase of 6dEB titers. The transposon disrupted the treC gene, which encodes the enzyme trehalose-6-phosphate hydrolase. The parental strain showed a surprising decrease in 6dEB titers, beginning at 72 hours post-inoculation. We hypothesized that this decrease in 6dEB titers is due to the hydrolysis of the ester group of 6dEB, resulting in ring-opening and giving the molecule a net negative charge that prevents the molecule from being extracted by ethyl acetate. Subsequent mass spectrometry investigations appear to support this hypothesis, with the detection of a molecular mass that corresponds to the predicted molecular mass of this 6dEB-derived hydroxy acid. The rate of this ring-opening reaction appears to correlate with the alkalinity of the culture; the parental strain reaches a maximum pH of 9.39 while the mutant strain reaches a maximum pH of 8.61. Furthermore, the alkalinity of the culture appears to correlate with the growth rate of the culture. By growing slower due to the inability to metabolize trehalose (a component of yeast extract that is used in LB medium), the mutant strain may maintain a more neutral pH, leading to slower base-catalyzed ring-opening of 6dEB.; This work illustrates insights and applications that can arise from applying directed evolution to laboratory biosynthesis of small molecules. The identification of a mutation created by a transposon led to a hypothesis that involved growth rates, alkalinity of LB cultures, and base-catalyzed hydrolysis of a macrolactone, which further experiments supported. Furthermore, properties of the mutant strain suggest various ways to increase yields of pharmaceuticals from laboratory processes.
机译:定向进化增强了生物表型,在药物和生物技术中具有广泛的应用。在实验室中,科学家会定期针对特定目的对生物进行工程改造,例如生物制剂的生物合成。这种类型的目的驱动工程通常涉及对已知细胞过程的靶向操作(代谢工程)或突变库的创建和后续筛选(菌株改良)。我们创建了一个带有转座子插入的大肠杆菌突变体文库,并筛选了该库中滴度更高的6-脱氧赤藓醇B(6dEB)(抗生素红霉素的前体)的滴度。超过2000个突变体的筛选确定了一个菌株,该菌株显示出6dEB滴度增加了两倍。转座子破坏了treC基因,该基因编码6磷酸海藻糖水解酶。从接种后72小时开始,亲本菌株显示出令人惊讶的6dEB滴度下降。我们假设6dEB滴度的下降是由于6dEB酯基的水解,导致开环并给分子带来净负电荷,从而阻止了分子被乙酸乙酯萃取。随后的质谱研究似乎支持了这一假设,即检测到了与该6dEB衍生的羟基酸的预测分子量相对应的分子量。该开环反应的速率似乎与培养物的碱度相关。亲本菌株的最大pH达到9.39,而突变菌株的最大pH达到8.61。此外,培养物的碱度似乎与培养物的生长速率相关。由于不能代谢海藻糖(用于LB培养基的酵母提取物的一种成分)而使生长变慢,突变菌株可以保持更中性的pH,导致6dEB的碱催化开环变慢。这项工作说明了将定向进化应用于小分子的实验室生物合成中可能产生的见解和应用。转座子产生的突变的鉴定导致了一个假说,该假说涉及生长速率,LB培养物的碱度和大内酯的碱催化水解,这得到了进一步的实验的支持。此外,突变菌株的特性提示了各种增加实验室过程中药物产量的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号