首页> 外文学位 >Bioceramic scaffolds for bone tissue engineering.
【24h】

Bioceramic scaffolds for bone tissue engineering.

机译:用于骨组织工程的生物陶瓷支架。

获取原文
获取原文并翻译 | 示例

摘要

Synthesis of a porous bioactive 3-D scaffold that exhibits controlled resorbability and possesses mechanical properties compatible to host bone is a challenging task in orthopedic reconstructive surgeries. In the present study, silica-calcium phosphate nanocomposites (SCPC) were engineered with different chemical compositions and porosity contents (32-69%). X-ray computed tomography and mercury porosimetry revealed that SCPC scaffolds were characterized by a uniform distribution of interconnected pores in a wide size-range (3 nm--650 mum). Nanoporosity in the scaffolds originated from dehydration and particulate sintering, where as microporosity was controlled by the porogen content. The ranges of compressive strength and modulus of elasticity of SCPC containing 32-56% porosity were 1.5-50 MPa and 0.14-2.1 GPa respectively, which matched the corresponding values for trabecular bone. The compressive strength of dense SCPC was dependent on the Si-content, and acquired values (93-285 MPa) comparable to that of cortical bone. Inductively coupled plasma analysis demonstrated that Si-rich SCPC exhibited superior dissolution kinetics compared to bioactive glass (BG) and hydroxyapatite (HA-200). Moreover, FTIR analysis revealed that Si-rich SCPC rapidly developed a surface apatite layer after 2 h of immersion in simulated body fluid, while a similar layer was detected on BG after 8 days of immersion. Quantitative real-time PCR results showed that neonatal rat calvarial osteoblasts attached to Si-rich SCPC expressed significantly higher levels of osteocalcin and osteopontin mRNA compared to that by cells attached to HA or polystyrene (TOPS). This suggested a role of Si in stimulating the differentiation and mineralization of osteoblast precursor cells. The effects of dissolved phosphorus on cell function were also investigated by incubating SCPC-, HA- and TOPS-cell systems in culture media supplemented with 3 mM beta-glycerophosphate {lcub}MEM (+){rcub}. The dissolved P-content in MEM (+) increased significantly upon incubation with SCPC owing to the material dissolution products. Osteoblast phenotypic expression on SCPC was significantly decreased after four days of incubation in MEM (+), indicating that sustained exposure to elevated P-levels in the media can down-regulate osteoblast function. Our results show that silica-calcium phosphate nanocomposites can provide a 3D porous, bioactive and resorbable template for cell delivery applications in tissue engineering. Moreover, the bioactive matrix and controlled dissolution of SCPC provide a natural stimulus for bone cell differentiation in vitro, and could obviate the need for exogenous phosphate supplementation.; Keywords. Silica-calcium phosphate nanocomposite, bioceramic scaffolds, porosity, osteoblast gene expression, bone tissue engineering
机译:在骨科重建手术中,具有受控的可吸收性并具有与宿主骨相容的机械性能的多孔生物活性3-D支架的合成是一项艰巨的任务。在本研究中,设计了具有不同化学组成和孔隙率(32-69%)的二氧化硅-磷酸钙纳米复合材料(SCPC)。 X射线计算机断层扫描和水银孔率法显示,SCPC支架的特征是相互连接的孔在较宽的尺寸范围(3 nm--650 mum)中均匀分布。支架中的纳米孔性源自脱水和颗粒烧结,其中微孔性受成孔剂含量控制。孔隙率为32-56%的SCPC的抗压强度和弹性模量范围分别为1.5-50 MPa和0.14-2.1 GPa,与小梁骨的相应值相匹配。致密SCPC的抗压强度取决于Si含量,并且获得的值(93-285 MPa)与皮质骨相当。电感耦合等离子体分析表明,与生物活性玻璃(BG)和羟基磷灰石(HA-200)相比,富硅SCPC表现出优异的溶解动力学。此外,FTIR分析表明,富含Si的SCPC浸入模拟体液中2小时后,迅速形成了表面磷灰石层,而浸入8天后,在BG上检测到了类似的层。实时定量PCR结果显示,与富含HA或聚苯乙烯(TOPS)的细胞相比,附着在富含Si的SCPC上的新生大鼠颅盖成骨细胞表达的骨钙素和骨桥蛋白mRNA水平明显更高。这暗示了Si在刺激成骨细胞前体细胞的分化和矿化中的作用。还通过在补充了3 mMβ-甘油磷酸{lcub} MEM(+){rcub}的培养基中孵育SCPC-,HA-和TOPS细胞系统来研究溶解的磷对细胞功能的影响。与SCPC孵育后,由于物质溶解产物,MEM(+)中溶解的P含量显着增加。在MEM(+)中孵育四天后,SCPC上的成骨细胞表型表达显着降低,表明持续暴露于培养基中升高的P水平会下调成骨细胞功能。我们的结果表明,二氧化硅-磷酸钙纳米复合材料可为组织工程中的细胞递送应用提供3D多孔,生物活性和可吸收模板。此外,SCPC的生物活性基质和可控的溶出度为体外的骨细胞分化提供了自然的刺激,并且可以消除对外源磷酸盐的补充。关键字。二氧化硅-磷酸钙纳米复合材料,生物陶瓷支架,孔隙率,成骨细胞基因表达,骨组织工程

著录项

  • 作者

    Gupta, Gautam.;

  • 作者单位

    University of Kentucky.;

  • 授予单位 University of Kentucky.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号