首页> 外文学位 >On real gas and molecular transport effects in high pressure mixing and combustion.
【24h】

On real gas and molecular transport effects in high pressure mixing and combustion.

机译:对实际气体和分子的输送作用在高压下混合燃烧。

获取原文
获取原文并翻译 | 示例

摘要

Linear stability analyses and direct numerical simulations (DNS) are conducted to study real gas and cross-diffusion (i.e. Soret and Dufour diffusion) effects in high pressure mixing layers and one-dimensional laminar diffusion flames. The formulation includes the fully-compressible form of the governing equations with generalized multicomponent cross diffusion in the presence of temperature, pressure, and concentration gradients (derived from non-equilibrium thermodynamics and fluctuation theory). Real gas effects are included by means of a cubic Peng-Robinson equation of state. Realistic transport models are employed for the viscosity, heat capacity, thermal conductivity, binary mass diffusion coefficients, and thermal diffusion factors. Five different models for high pressure thermal diffusion factors are assessed in comparisons with experimental data and in their impacts on high pressure flame simulations. While no model was able to predict all of the experimental data, the models typically bound the data and will therefore provide bounds on the potential importance of Soret and Dufour diffusion in high pressure flame simulations. The real gas and ideal gas models are first compared as they affect the linear inviscid stability of parallel shear flow base flow profiles provided by similarity analysis. The ideal gas model typically results in over predictions in the mixing layer growth rates, and substantial errors in predictions of the fluid densities, compressibilities, heat capacities, and sonic speeds. The impact of Soret and Dufour cross-diffusion on high pressure combustion is then addressed through simulations of laminar diffusion flames described by increasingly complex kinetics models. A parametric study of several simple one-step reactions is first presented based on a single thermal diffusion factor model allowing for a thorough analysis of all terms in the heat and mass flux vectors. Cross-diffusion effects increased as the reacting species molecular weight ratios increased with flame temperature departures > 100K in comparison to the standard Fickian and Fourier transport model. All five thermal diffusion factor models (as well as purely Fourier/Fickian diffusion) are then tested in simulations of H2 = Air (47-step, 12 species), H2 - O 2 (37-step, 8 species), CH4 - Air (11-step, 15 species), and C7 H16 - Air (13-step, 17 species) laminar diffusion flames (including NOx chemistry). Soret and Dufour effects generally resulted in significant peak flame temperature reductions for all flames. Pollutant species concentrations were also substantially altered by cross-diffusion. A parametric study based on the initial ambient pressure was also conducted which showed a general increase in the cross-diffusion effects with pressure for all the flames except CH4 - Air. For both the H 2 and C7H16 flames the temperature departures from the Fourier/Fickian model are > 100 K at the large pressures encountered in many practical combustion devices. The results highlight the importance of cross-diffusion and the continuing need for further research in high pressure combustion modeling.
机译:进行了线性稳定性分析和直接数值模拟(DNS),以研究高压混合层和一维层流扩散火焰中的真实气体和交叉扩散(即Soret和Dufour扩散)效应。该公式包括在温度,压力和浓度梯度(源自非平衡热力学和波动理论)下具有广义多组分交叉扩散控制方程的完全可压缩形式。借助三次方Peng-Robinson状态方程包含实际气体效应。对于粘度,热容量,热导率,二元质量扩散系数和热扩散因子,采用了实际的传输模型。通过与实验数据的比较及其对高压火焰模拟的影响,评估了五个不同的高压热扩散因子模型。尽管没有模型能够预测所有实验数据,但模型通常会约束数据,因此将为Soret和Dufour扩散在高压火焰模拟中的潜在重要性提供边界。首先对真实气体模型和理想气体模型进行比较,因为它们会影响相似性分析提供的平行剪切流基流剖面的线性无粘性稳定性。理想的气体模型通常会导致混合层增长率的过度预测,以及流体密度,可压缩性,热容和声速的预测中的重大误差。然后,通过越来越复杂的动力学模型描述的层流扩散火焰模拟,解决了Soret和Dufour交叉扩散对高压燃烧的影响。首先基于单个热扩散因子模型对几个简单的一步反应进行参数研究,从而可以对热通量和质量通量向量中的所有项进行全面分析。与标准Fickian和Fourier输运模型相比,随着火焰温度> 100K的变化,反应物种的分子量比率增加,交叉扩散效应也增加。然后在H2 =空气(47级,12种),H2-O 2(37级,8种),CH4-空气的模拟中测试所有五个热扩散因子模型(以及纯傅里叶/菲克扩散)。 (11步,15种)和C7 H16-空气(13步,17种)层流扩散火焰(包括NOx化学物质)。 Soret和Dufour效应通常会导致所有火焰的峰值火焰温度明显降低。交叉扩散也大大改变了污染物的浓度。还进行了基于初始环境压力的参数研究,结果表明,除CH4-空气外,所有火焰的交叉扩散效应均随压力的增加而增加。对于H 2和C7H16火焰,在许多实际燃烧装置中遇到的大压力下,傅立叶/菲克模型的温度偏差> 100K。结果突出了交叉扩散的重要性以及在高压燃烧模型中对进一步研究的持续需求。

著录项

  • 作者

    Palle, Sridhar.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号