首页> 外文学位 >Fatigue and fracture properties of submicron aluminum trioxide reinforced 6061 aluminum composite.
【24h】

Fatigue and fracture properties of submicron aluminum trioxide reinforced 6061 aluminum composite.

机译:亚微米三氧化二铝增强6061铝复合材料的疲劳和断裂性能。

获取原文
获取原文并翻译 | 示例

摘要

Many practical applications of structural components made from Metal Matrix Composites (MMC) involve cyclic loading. To ensure the structural integrity of components fabricated from the MMCs and to qualify for commercial applications, it must exhibit static and dynamic mechanical properties that are comparable and superior to those of conventional materials. In that respect, evaluation of fatigue and fracture properties becomes imperative during the development of a new material. There have been numerous studies which investigated the effect of large size reinforcements (few to ten micron in size) on the fatigue and fracture process in MMCs. However, no published data have been found which aimed to delineate the role of sub-micron size reinforcement.; The main objective of the present work was to study the strain controlled fatigue, fatigue crack growth resistance and fracture toughness of 6061 aluminum alloy reinforced with sub-micron aluminum oxide particles of 10 and 20% volume fraction. The 10% Al2O3P reinforcement composite showed better strain controlled fatigue resistance when compared to the 20% reinforcement composite. Both the composites followed the Coffin-Manson and the Basquin's relationship. Among the two composites a higher fatigue ductility was observed for the 10% Al2O3 P reinforcement composite. The fatigue crack growth rate data indicated a slightly higher threshold stress intensity factor (DeltaKth) in the 20% reinforcement composite. The fatigue crack growth rate in the Paris region was greater in 10% reinforcement composite when compared to the 20% reinforcement composite. The fracture toughness (KQ) for the 10 and 20% Al2O3 P reinforcement composites were obtained as 25.1 MPa m and 18.1 MPa m respectively.
机译:由金属基复合材料(MMC)制成的结构部件的许多实际应用涉及循环载荷。为了确保由MMC制造的组件的结构完整性并符合商业应用的条件,它必须具有与传统材料相当且优于传统材料的静态和动态机械性能。在这方面,在开发新材料期间必须评估疲劳和断裂性能。有许多研究调查了大型增强材料(尺寸只有几微米到十微米)对MMC疲劳和断裂过程的影响。但是,尚未发现旨在描述亚微米尺寸增强作用的公开数据。本工作的主要目的是研究用体积分数为10%和20%的亚微米氧化铝颗粒增强的6061铝合金的应变控制疲劳,抗疲劳裂纹扩展性和断裂韧性。与20%增强复合材料相比,10%Al2O3P增强复合材料表现出更好的应变控制疲劳强度。两种合成物都遵循科芬-曼森(Coffin-Manson)和巴斯金(Basquin)的关系。在两种复合材料中,观察到10%Al2O3 P增强复合材料的疲劳延展性更高。疲劳裂纹扩展速率数据表明,在20%增强复合材料中,阈值应力强度因子(DeltaKth)略高。与20%增强复合材料相比,10%增强复合材料在巴黎地区的疲劳裂纹增长率更高。 10%和20%Al2O3 P增强复合材料的断裂韧性(KQ)分别为25.1 MPa m和18.1 MPa m。

著录项

  • 作者

    Ali, Syed Shujath.;

  • 作者单位

    King Fahd University of Petroleum and Minerals (Saudi Arabia).;

  • 授予单位 King Fahd University of Petroleum and Minerals (Saudi Arabia).;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2007
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号