首页> 外文学位 >Mechanisms of lifetime improvement in thermal barrier coatings with hafnium and/or yttrium modification of CMSX-4 superalloy substrates.
【24h】

Mechanisms of lifetime improvement in thermal barrier coatings with hafnium and/or yttrium modification of CMSX-4 superalloy substrates.

机译:ha和/或CMSX-4高温合金钇修饰的热障涂层寿命改善机理。

获取原文
获取原文并翻译 | 示例

摘要

In modern turbine engines for propulsion and energy generation, thermal barrier coatings (TBCs) protect hot-section blades and vanes, and play a critical role in enhancing reliability, durability and operation efficiency. In this study, thermal cyclic lifetime and microstructural degradation of electron beam physical vapor deposited (EB-PVD) Yttria Stabilized Zirconia (YSZ) with (Ni,Pt)Al bond coat and Hf- and/or Y-modified CSMX-4 superalloy substrates were examined. Thermal cyclic lifetime of TBCs was measured using a furnace thermal cycle test that consisted of 10-minute heat-up, 50-minute dwell at 1135°C, and 10-minute forced-air-quench. TBC lifetime was observed to improve from 600 cycles to over 3200 cycles with appropriate Hf- and/or Y-alloying of CMSX-4 superalloys. This significant improvement in TBC lifetime is the highest reported lifetime in literature with similar testing parameters. Beneficial role of reactive element (RE) on the durability of TBCs were systematically investigated in this study. Photostimulated luminescence (PL) spectroscopy was employed to non-destructively measure the residual stress within the TGO scale as a function of thermal cycling. Extensive microstructural analysis with emphasis on the YSZ/TGO interface, TGO scale, TGO/bond coat interface and bond coats was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM) as a function of thermal cycling including after the spallation failure. Focused ion beam in-situ lift-out (FIB-INLO) technique was employed to prepare site-specific TEM specimens. X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS) were also employed for phase identification and interfacial chemical analysis.; While undulation of TGO/bond coat interface (e.g., rumpling and ratcheting) was observed to be main mechanism of degradation for TBCs on baseline CMSX-4, the same interface remained relatively flat (e.g., suppressed rumpling and ratcheting) for durable TBCs on Hf- and/or Y-modified CSMX-4. The fracture paths changed from the YSZ/TGO interface to the TGO/bond coat interface when rumpling was suppressed. The geometrical incompatibility between the undulated TGO and EB-PVD YSZ lead to the failure at the YSZ/TGO interface for TBCs with baseline CMSX-4. The magnitude of compressive residual stress within the TGO scale measured by PL gradually decreased as a function of thermal cycling for TBCs with baseline CMSX-4 superalloy substrates. This gradual decrease corresponds well to the undulation of the TGO scale that may lead to relaxation of the compressive residual stress within the TGO scale. For TBCs with Hf- and/or Y-modified CMSX-4 superalloy substrates, the magnitude of compressive residual stress within the TGO scale remained relatively constant throughout the thermal cycling, although PL corresponding to the stress-relief caused by localized cracks at the TGO/bond coat interface and wihin the TGO scale was observed frequently starting 50% of lifetime.; A slightly smaller parabolic growth constant and grain size of the TGO scale was observed for TBCs with Hf- and/or Y-modified CSMX-4. Small monoclinic HfO2 precipitates were observed to decorate grain boundaries and the triple points within the alpha-Al2O3 scale for TBCs with Hf- and/or Y-modified CSMX-4 substrates. Segregation of Hf/Hf 4+ at the TGO/bond coat interfaces was also observed for TBCs with Hf and/or Y modified CMSX-4 superalloy substrates. Adherent and pore-free YSZ/TGO interface was observed for TBCs with Hf and/or Y modified CMSX-4, while a significant amount of decohesion at the YSZ/TGO interface was observed for TBCs with baseline CMSX-4. The beta-NiAl (B2) phase in the (Ni,Pt)Al bond coat was observe to partially transform into gamma'-Ni3 Al (L12) phase due to depletion of Al in the bond coat during oxidation. More importantly, the remaining beta-NiAl phase transformed into L10 martensitic phase upon c
机译:在用于推进和发电的现代涡轮发动机中,热障涂层(TBC)保护热区叶片和叶片,并在提高可靠性,耐用性和运行效率方面发挥关键作用。在这项研究中,具有(Ni,Pt)Al键合涂层和Hf和/或Y改性的CSMX-4超级合金基底的电子束物理气相沉积(EB-PVD)氧化钇稳定氧化锆(YSZ)的热循环寿命和微观结构降解被检查。 TBC的热循环寿命是使用炉子热循环测试来测量的,该测试包括加热10分钟,在1135°C下停留50分钟以及强制空气淬火10分钟。观察到适当的Hf和/或Y合金化CMSX-4超级合金,TBC寿命从600个循环提高到3200个循环。在具有相似测试参数的文献中,TBC寿命的显着提高是文献中报道的最高寿命。在这项研究中系统地研究了反应性元素(RE)对TBC耐久性的有益作用。使用光刺激发光(PL)光谱非破坏性地测量TGO标度内作为热循环函数的残余应力。通过扫描电子显微镜(SEM),透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)对YSZ / TGO界面,TGO规模,TGO /粘结层界面和粘结层进行了广泛的微观分析。热循环的功能,包括散裂失败后的功能。聚焦离子束原位抬起(FIB-INLO)技术用于制备特定位置的TEM标本。 X射线衍射(XRD)和二次离子质谱(SIMS)也用于相鉴定和界面化学分析。尽管观察到TGO /粘结层界面起伏不平(例如起皱和棘齿)是基线CMSX-4上TBC降解的主要机理,但对于Hf上的持久性TBC,相同的界面仍然相对平坦(例如抑制起皱和棘齿)。 -和/或Y修改的CSMX-4。当抑制起皱时,断裂路径从YSZ / TGO界面变为TGO /粘结涂层界面。对于基线为CMSX-4的TBC,起伏的TGO和EB-PVD YSZ之间的几何不兼容会导致YSZ / TGO界面出现故障。对于具有基线CMSX-4超级合金基底的TBC,通过PL测量的TGO范围内的压缩残余应力的大小随着热循环的变化而逐渐降低。这种逐渐减小与TGO刻度的起伏很好地对应,这可能导致TGO刻度内压缩残余应力的松弛。对于具有Hf和/或Y修饰的CMSX-4高温合金基底的TBC,尽管PL对应于由TGO局部裂纹引起的应力消除,但在整个热循环中TGO尺度内的压缩残余应力的大小保持相对恒定。经常观察到/粘结层界面和TGO垢,开始寿命的50%。对于具有Hf和/或Y修饰的CSMX-4的TBC,观察到略小的抛物线生长常数和TGO尺度的晶粒尺寸。对于具有Hf和/或Y修饰的CSMX-4底物的TBC,观察到小的单斜晶HfO2沉淀物装饰了晶界和α-Al2O3尺度内的三点。对于具有Hf和/或Y修饰的CMSX-4高温合金基底的TBC,也观察到了TGO /粘结涂层界面处Hf / Hf 4+的偏析。对于具有Hf和/或Y修饰的CMSX-4的TBC,观察到了粘附且无孔的YSZ / TGO界面,而对于具有基线CMSX-4的TBC,在YSZ / TGO界面上观察到了明显的脱粘。观察到(Ni,Pt)Al粘结层中的β-NiAl(B2)相由于氧化过程中粘结层中的Al耗尽而部分转化为γ'-Ni3Al(L12)相。更重要的是,剩余的β-NiAl相在c转变为L10马氏体相

著录项

  • 作者

    Liu, Jing.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号