首页> 外文学位 >Level set methods for shape and topology optimization of structures.
【24h】

Level set methods for shape and topology optimization of structures.

机译:用于结构形状和拓扑优化的水平集方法。

获取原文
获取原文并翻译 | 示例

摘要

The concept of structural optimization has been more and more widely accepted in many engineering fields during the past several decades, because the optimization can result in a much more reasonable and economical structure design with even less material consumption.; A significant limitation of the conventional level set method in topology optimization is that it can not create new holes in the design domain. Therefore, the topological derivative approach is proposed to overcome this problem. In this part of the thesis, we investigated the use of the topological derivative in combination with the level set method for topology optimization of solid structures. The topological derivative can indicate the appropriate location to create new holes so that the strong dependency of the optimal topology on the initial design can be alleviated. We also develop an approach to evolve the level set function by replacing the gradient item with a Delta function in the standard Hamilton-Jacobi equation. We find that this handling can create new holes in the solid domain, grow a structure from an empty domain, and improve the convergence rate of the optimization process. The success of our approach is demonstrated by several numerical examples.; In the second part of this thesis, we implement another variational level set method, the piecewise constant level set (PCLS) method. This method was first proposed by Lie-Lysaker-Tai in the interface problem field for such tasks as image segmentation and denoising problems. In this approach, by defining a piecewise density function over the whole design domain, the sensitivity of the objective function in respect to the design variable, the level set surface, can be explicitly obtained. Thus, the piecewise density function can be viewed as a bridge establishing the relationship between the implicit level set function and the performance function defined on the design domain. This proposed method retains the advantages of the implicit level set representation, such as the capability of the interface to develop sharp corners, break apart and merge together in a flexible manner. Because the PCLS method is implemented by an implicit iteration differential scheme rather than solving the Hamilton-Jacobi equation, it is not only free of the CFL condition and the reinitialization scheme, but it is also easy to implement. These favorable properties lead to a great timesaving advantage over the conventional level set method. Two other meaningful advantages are the natural nucleation property with which the proposed PCLS method need not incorporate any artificial nucleation scheme and the dependence of the initial design is greatly alleviated.; In the third part of this thesis, we apply a parametric scheme by combining the conventional level set method with radial basis functions (RBFs). This method is introduced because the conventional level set function has no analytical form then the entire design domain must be made discrete in an artificial manner using a rectilinear grid for level set processing - often through a distance transform. The classical level set method for structural topology optimization requires a careful choice of an upwind scheme, extension velocity and a reinitialization algorithm. With the versatile tool, RBF, the original problem can be converted to a parametric optimization problem. Therefore, the costly Hamilton-Jacobi PDE solving procedure can be easily replaced by a standard gradient method or another mature conventional optimization method in the parameter space such as MMA, OC, mathematic programming and so on.; Following those methods some numerical implementation issues are discussed, and numerical examples of 2D structural topology optimization problems of minimum compliance design are given and combined with a comparative study where the efficiency, convergence and accuracy of the present methods are highlighted. Finally, conclusions are given.; Keywords: structural optimiza
机译:在过去的几十年中,结构优化的概念已在许多工程领域得到越来越广泛的接受,因为这种优化可以使结构设计更加合理和经济,而材料消耗更少。传统的水平集方法在拓扑优化中的一个重大限制是它不能在设计域中创建新的漏洞。因此,提出了拓扑导数方法来克服该问题。在本文的这一部分,我们研究了拓扑导数结合水平集方法对实体结构进行拓扑优化的方法。拓扑导数可以指示创建新孔的合适位置,从而可以减轻最佳拓扑对初始设计的强烈依赖性。我们还开发了一种方法,通过用标准Hamilton-Jacobi方程中的Delta函数替换梯度项来演化水平集函数。我们发现这种处理可以在实体域中创建新的空洞,从空域中生长出一个结构,并提高优化过程的收敛速度。几个数值示例证明了我们方法的成功。在本文的第二部分中,我们实现了另一种可变水平集方法,即分段恒定水平集(PCLS)方法。这种方法最早是由Lie-Lysaker-Tai在界面问题领域提出的,用于图像分割和去噪问题。在这种方法中,通过在整个设计域上定义分段密度函数,可以明确获得目标函数相对于设计变量(水平设置表面)的敏感性。因此,可以将分段密度函数视为在隐式级别集函数和设计域上定义的性能函数之间建立关系的桥梁。所提出的方法保留了隐式水平集表示的优点,例如界面具有形成尖角,分离并以灵活方式合并在一起的能力。因为PCLS方法是通过隐式迭代微分方案而不是通过求解Hamilton-Jacobi方程来实现的,所以它不仅摆脱了CFL条件和重新初始化方案,而且易于实现。与常规的水平设定方法相比,这些有利的特性带来了极大的省时优势。另外两个有意义的优点是自然成核特性,所提出的PCLS方法无需结合任何人工成核方案,并且可以大大减轻初始设计的依赖性。在本文的第三部分中,我们通过将常规的水平集方法与径向基函数(RBF)相结合来应用参数化方案。之所以引入这种方法,是因为常规的水平集函数没有解析形式,然后必须使用直线网格对水平集进行处理(通常是通过距离变换),以人工方式将整个设计域离散化。用于结构拓扑优化的经典水平集方法需要仔细选择迎风方案,扩展速度和重新初始化算法。使用通用工具RBF,可以将原始问题转换为参数优化问题。因此,在参数空间中,例如MMA,OC,数学编程等,可以很容易地用标准梯度法或另一种成熟的常规优化方法代替昂贵的Hamilton-Jacobi PDE求解程序。在这些方法之后,讨论了一些数值实现问题,并给出了最小顺应性设计的二维结构拓扑优化问题的数值示例,并与对比研究相结合,其中突出了本方法的效率,收敛性和准确性。最后给出结论。关键字:结构优化

著录项

  • 作者

    Wei, Peng.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Applied Mechanics.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:39:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号