首页> 外文学位 >Determination of mechanical behavior of nanoscale materials using molecular dynamics simulations.
【24h】

Determination of mechanical behavior of nanoscale materials using molecular dynamics simulations.

机译:使用分子动力学模拟确定纳米级材料的机械行为。

获取原文
获取原文并翻译 | 示例

摘要

It is important to understand the mechanical properties of nanometer-scale materials for use in such applications as microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). These properties are difficult to measure directly using experimental methods due to their small sizes. Computational simulations provide important insights that complement experimental data and lead to improved understanding of the mechanical properties of nanometer-scale systems. Molecular dynamics (MD) simulations, which are used to investigate the properties of materials at the atomic scale, is used in my research to determine (1) best thermostat managing way for acceptable mechanical behavior of nanoscale systems; (2) filling effect on the bending and compressive properties of carbon nanotubes (CNTs); (3) vibrational behavior of bridged and cantilevered CNT bombarded by external fluid atoms; (4) frictional behavior of filled CNT bundles and the effect of external molecules on friction; (5) effect of sliding orientations on the tribological properties of polyethylene (PE).; In all the simulations the reactive empirical bond-order (REBO) potential combined with the Lennard Jones potential is applied to control inter-atomic interactions. During the MD simulations, thermostats are used to maintain the system temperature at a constant value. Tests indicate that the simulations describe the mechanical behavior of CNTs differently depending on the type of thermostat used, and the relative fraction of the system to which the thermostat is applied. The results indicate that Langevin and velocity rescaling thermostats are more reliable for temperature control than the Nose-Hoover thermostat.; In examining CNT bending and compression, the simulations predict filled CNTs are more resistant to external bending and compressive forces than hollow CNTs. The mechanical properties deteriorate with increases in temperature and number of CNT wall defects.; MD simulations of the vibrational behavior of bridged and cantilevered CNTs are found to match the results of continuum mechanics calculations. The principal vibration frequency of the CNT is predicted to decrease with increasing nanotube length, gas pressure, and the atomic mass of the external fluid.; In studies of CNT tribology, simulations show that two layers of filled CNTs are more resistant to compressive forces and exhibit lower friction coefficients during sliding than unfilled CNTs. The friction coefficient increases with the thickness of the CNT layer due to the increase in effective friction interface. The addition of an external, molecular fluid of benzene molecules is predicted to reduce the friction coefficient of CNTs because of the lubricity of the molecules.; Lastly, simulation results illustrate the effect of relative orientation on the tribological properties of polyethylene (PE) sliding surfaces. The friction coefficient of perpendicular sliding is much higher than that of parallel sliding based on the polymer chain orientation. The PE exhibits stick-slip motion during sliding regardless of the sliding orientation. In addition, the PE shows no surface morphology change due to the higher strength of the PE bonds, which is in contrast to the behavior of other polymers, such as polytetrafluoroethylene (PTFE), which exhibits bond breaking and realignment of surface chains along the sliding direction in the less favorable orientation.
机译:重要的是要了解用于诸如微机电系统(MEMS)和纳米机电系统(NEMS)等应用的纳米级材料的机械性能。这些特性由于尺寸小,难以直接使用实验方法进行测量。计算仿真提供了重要的见解,可补充实验数据并有助于更好地理解纳米级系统的机械性能。在我的研究中,使用分子动力学(MD)模拟来研究材料在原子尺度上的特性,以确定(1)可接受的纳米级机械性能的最佳恒温器管理方式; (2)填充对碳纳米管(CNT)的弯曲和压缩性能的影响; (3)被外部流体原子轰击的悬臂式碳纳米管的振动行为; (4)填充的CNT束的摩擦行为以及外部分子对摩擦的影响; (5)滑动方向对聚乙烯(PE)的摩擦学性能的影响。在所有模拟中,将反应性经验键序(REBO)势与Lennard Jones势相结合,以控制原子间的相互作用。在MD模拟过程中,使用恒温器将系统温度维持在恒定值。测试表明,根据所使用的恒温器的类型以及应用恒温器的系统的相对分数,模拟对CNT的机械行为的描述不同。结果表明,Langevin和速度定标恒温器比Nose-Hoover恒温器更可靠。在检查CNT的弯曲和压缩时,模拟预测填充的CNT比空心CNT更能抵抗外部弯曲和压缩力。随着温度和CNT壁缺陷数量的增加,机械性能变差。发现桥接和悬臂式碳纳米管的振动行为的MD模拟与连续力学计算的结果相匹配。预计CNT的主要振动频率会随着纳米管长度,气压和外部流体原子质量的增加而降低。在CNT摩擦学研究中,模拟显示,与未填充的CNT相比,两层填充的CNT更能抵抗压缩力,并且在滑动过程中表现出较低的摩擦系数。由于有效摩擦界面的增加,摩擦系数随着CNT层的厚度而增加。由于分子的润滑性,预计添加外部的苯分子分子流体会降低CNT的摩擦系数。最后,仿真结果说明了相对取向对聚乙烯(PE)滑动表面的摩擦学性能的影响。基于聚合物链取向,垂直滑动的摩擦系数远高于平行滑动的摩擦系数。无论滑动方向如何,PE都会在滑动过程中表现出粘滑运动。此外,由于PE键的强度较高,因此PE没有显示出表面形态变化,这与其他聚合物(例如聚四氟乙烯(PTFE))的行为相反,后者表现出键断裂和表面链沿滑动的重新排列方向不太有利。

著录项

  • 作者

    Heo, Seongjun.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号