首页> 外文学位 >A quantitative determination of electrode kinetics using micropatterned electrodes.
【24h】

A quantitative determination of electrode kinetics using micropatterned electrodes.

机译:使用微图案化电极定量测定电极动力学。

获取原文
获取原文并翻译 | 示例

摘要

Interfacial polarization resistances limit the performance of many thin film solidstate devices, especially at low temperatures. To improve performance, a fundamental understanding of the electrode kinetics that govern interfacial reaction rates must be developed. The goal of this work is to determine site-specific reaction mechanisms and the relative significance of various reactions in order to quantify optimum structural parameters within the cathode microstructure. Key parameters include the length of triple phase boundary (TPB), the quantity of exposed electrolyte/electrode surface, and the ratio of electrolyte to electrode material. These parameters, when studied in a specific system, can be incorporated into broader models, which will encompass the specific conductivity of each component to develop an optimized three-dimensional network.; The emphasis of this work is the systematic control and manipulation of potential cathodic reaction sites in order to develop an understanding of the relative importance of specific reaction sites. Since the physical dimensions of reaction sites are relatively small, an approach has been developed that utilizes micro-fabrication (similar to that used in integrated-circuit fabrication) to produce small and highly controlled microstructures.; Investigations were made into the nature and reactivity of Triple Phase Boundaries (hereafter TPB) through the use of patterned platinum electrodes since only the TPBs are active in these electrodes. After the processing details of micro-fabrication were established for the platinum electrodes, patterned Mixed-Ionic/Electronic Conducting (MIEC) electrodes were fabricated and studied using impedance spectroscopy to determine the contributions from the MIEC surface versus the TPB. Systematically changing the geometry of the MIEC electrodes (thickness and line width) allowed for the determination of the effect of ambipolar transport within the MIEC on the activity of MIEC surfaces versus the TPB. This information is critical to rational design of functionally graded electrodes (with optimal particle size, shape, porosity and conductivity). In addition to experimental studies, representative patterned electrode samples were made available for collaborative studies with surface scientists at other institutions to provide additional techniques (such as Raman Spectroscopy) on the carefully designed and controlled cathode surfaces.
机译:界面极化电阻限制了许多薄膜固态器件的性能,尤其是在低温下。为了提高性能,必须对控制界面反应速率的电极动力学有基本的了解。这项工作的目的是确定特定位置的反应机理和各种反应的相对重要性,以便量化阴极微结构内的最佳结构参数。关键参数包括三相边界(TPB)的长度,暴露的电解质/电极表面的数量以及电解质与电极材料的比率。当在特定系统中研究这些参数时,可以将它们纳入更广泛的模型中,该模型将涵盖每个组件的比电导率,以开发优化的三维网络。这项工作的重点是对潜在的阴极反应位点进行系统的控制和操纵,以加深对特定反应位点的相对重要性的理解。由于反应位点的物理尺寸较小,因此已经开发出一种利用微细加工(类似于集成电路制造中所用的方法)来生产小型且高度受控的微结构的方法。由于只有TPB在这些电极中起作用,因此通过使用图案化的铂电极对三相边界(以下称TPB)的性质和反应性进行了研究。在建立了铂电极的微细加工工艺细节之后,就制作了带图案的混合离子/电子导电(MIEC)电极,并使用阻抗谱进行了研究,以确定MIEC表面相对于TPB的贡献。系统地改变MIEC电极的几何形状(厚度和线宽)可以确定MIEC中双极性传输对MIEC表面相对于TPB活性的影响。这些信息对于功能梯度电极的合理设计(具有最佳的粒径,形状,孔隙率和电导率)至关重要。除实验研究外,还提供了有代表性的图案化电极样品,供与其他机构的表面科学家合作研究,以在经过精心设计和控制的阴极表面上提供其他技术(例如拉曼光谱法)。

著录项

  • 作者

    Koep, Erik.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号