首页> 外文学位 >The effect of workpiece microstructure on the mechanics of microscale cutting of 1045 steel.
【24h】

The effect of workpiece microstructure on the mechanics of microscale cutting of 1045 steel.

机译:工件显微组织对1045钢微尺度切削力学的影响。

获取原文
获取原文并翻译 | 示例

摘要

The demand for miniaturization of metallic components and improved machine tool control and accuracy have made ultra-precision machining a more common process in manufacturing environments. As a result, the scale of cutting has been decreasing to the point that it is on the same order or smaller than the workpiece materials microstructure. To date however, very little is known about how material properties and the mechanics of the cutting process change as cutting moves from the macroscale to the microscale.;To properly model microscale cutting and the effects of material microstructure during multi-scale machining, a series of heterogeneous FE cutting models were developed. From these FE cutting models, the predicted chip forms more accurately reflected the experimental results across all scales, and the formation of surface defects on the machined surface could be observed and analysed. With a single Johnson-Cook constitutive equation, shear instability, shear and strain localization, and thermal softening events could be modeled by incorporating a microstructure into the FE cutting models.;Using normalised and micro-structurally refined AISI 1045 steel as the workpiece material, macro, meso, and microscale orthogonal cutting tests along with heterogeneous finite element (FE) cutting models were used to demonstrate and subsequently explain the mechanics of microscale cutting a heterogeneous microstructure such as AISI 1045 steel. The basis for defining the scale of cutting as macro, meso, or microscale was based on the size of the grains of the workpiece microstructure. From the experimental cutting tests, the classic continuous chip formation was shown to transition as the scale of cutting decreased. Ultimately, during microscale machining a new chip type, a Quasi-shear-extrusion (QSE) chip was observed. Examination of the machined surfaces also revealed that surface defects always from when machining a heterogeneous workpiece material such as steel. With a definitive link between material microstructure and the formation of surface dimples, surface defects are shown to always occur in a specific direction relative to the workpiece materials microstructure.
机译:对金属部件的小型化以及改善的机床控制和精度的需求已使超精密加工成为制造环境中更为普遍的工艺。结果,切割的规模已经减小到与工件材料的微观结构相同或更低的程度。然而,迄今为止,人们对材料的特性和切削过程的力学如何随着切削从宏观尺度向微观尺度的变化知之甚少。为了正确建模微观尺度切削以及多尺度加工过程中材料微观结构的影响,一系列开发了多种有限元切割模型。从这些有限元切削模型中,预测的切屑形式可以更准确地反映所有规模的实验结果,并且可以观察和分析加工表面上的表面缺陷的形成。使用单个Johnson-Cook本构方程,可以通过将微观结构整合到FE切削模型中来模拟剪切不稳定性,剪切和应变局部化以及热软化事件;使用归一化和微结构精制的AISI 1045钢作为工件材料,宏观,细观和微观尺度的正交切削试验以及非均质有限元(FE)切削模型被用来证明并随后解释了微观尺度切削非均质组织(如AISI 1045钢)的机理。将切削尺度定义为宏观,中尺度或微观尺度的基础是基于工件微结构的晶粒尺寸。从实验切削测试来看,经典的连续切屑形成随着切削尺寸的减小而过渡。最终,在微型加工新芯片类型期间,观察到准剪切挤压(QSE)芯片。对机加工表面的检查还表明,表面缺陷总是来自加工异质工件材料(例如钢)时产生的。通过在材料微观结构和表面凹痕的形成之间建立起明确的联系,表明表面缺陷总是相对于工件材料微观结构在特定方向上发生。

著录项

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号