首页> 外文学位 >Tail equivalent linearization method for nonlinear random vibration.
【24h】

Tail equivalent linearization method for nonlinear random vibration.

机译:非线性随机振动的尾部等效线性化方法。

获取原文
获取原文并翻译 | 示例

摘要

A new, non-parametric linearization method for nonlinear random vibration analysis is developed. The method employs a discrete representation of the stochastic excitation and concepts from the first-order reliability method, FORM, to compute first-order approximations to stochastic response statistics of interest. The stochastic excitation is discretized and represented in terms of a finite number of standard normal random variables. This representation makes it possible to formulate the tail-probability problem, i.e. the probability that a stochastic response quantity of interest exceeds a specified threshold at a specified point in time, as a time-invariant component reliability problem. Thus, the tail-probability problem can be solved by methods of structural reliability, e.g., FORM, by finding the so called "design point," which is the point of minimum distance from the origin on the limit-state surface in the space of the standard normal random variables. It is shown that for a linear system there exists an inverse relation between the design point of the tail-probability problem and the unit impulse response function of the system. Using this relation, the linear system can be uniquely determined from the knowledge of the design point in terms of its impulse response function.; In the equivalent linearization method developed in this study, the equivalent linear system is defined by matching the design points of the linear and nonlinear responses. Due to this definition, the tail probability of the equivalent linear system is equal to the first-order approximation of the tail probability of the nonlinear system. For this reason, the name Tail-Equivalent Linearization Method (TELM) is assigned to the method. As opposed to the conventional equivalent linearization method (ELM), which is a parametric method, the TELM is a non-parametric linearization method, since the equivalent linear system is defined numerically in terms of its impulse response function without the need to define a parameterized linear system. Having obtained the tail-equivalent linear system (TELS), linear random vibration analysis with the TELS is performed to determine various statistics of the nonlinear response, such as the probability distribution, the mean level-crossing rate and the first-passage probability.; Several important characteristics of the TELS, which have important bearing on the computational aspects of the TELM, are investigated. It is found that the TELS critically depends on the response threshold of interest. Through this dependence, the TELM is able to predict the non-Gaussian distribution of the nonlinear response and accurately predict tail probabilities, which are important in reliability and safety assessment. When the full distribution of the response is of interest, this dependence on the response threshold requires obtaining the design points for a sequence of thresholds. For this purpose, an algorithm to efficiently computing the design points for a sequence of response thresholds is developed. Secondly, the TELS is found to be invariant of the scaling of the excitation. This property makes it possible to estimate response statistics for a sequence of scaled excitations (fragility analysis) with a single determination of the TELS. Thirdly, the TELS is found to be only mildly dependent on the frequency content of broadband excitations. This property allows us to use the TELS obtained for a white-noise excitation to estimate the response statistics for other broadband excitations. Lastly, for nonstationary responses, it is found that the TELS for a selected time point provides fairly reasonable approximation to the first-passage probability. Using this approximation, TELSs determined at a single time point are sufficient for analysis of both stationary and nonstationary responses.; Example applications to single- and multi-degree-of-freedom, non-degrading hysteretic systems illustrate various features of the method. Compar
机译:提出了一种新的非参数线性化方法,用于非线性随机振动分析。该方法采用了随机激励的离散表示形式以及一阶可靠性方法FORM的概念来计算感兴趣的随机响应统计信息的一阶近似值。随机激励被离散化,并以有限数量的标准正态随机变量表示。该表示使得可以将尾部概率问题公式化,即感兴趣的随机响应量在指定的时间点超过指定的阈值的概率,作为时不变分量可靠性问题。因此,可以通过结构可靠性方法(例如FORM)来解决尾部概率问题,方法是找到所谓的“设计点”,即在极限空间内距极限状态表面上的原点的最小距离的点。标准正常随机变量。结果表明,对于线性系统,尾部概率问题的设计点与系统的单位冲激响应函数之间存在反比关系。使用该关系,可以根据设计点的知识根据其脉冲响应函数来唯一地确定线性系统。在这项研究中开发的等效线性化方法中,通过匹配线性和非线性响应的设计点来定义等效线性系统。由于这个定义,等效线性系统的尾部概率等于非线性系统的尾部概率的一阶近似值。由于这个原因,名称尾等效线性化方法(TELM)被分配给该方法。与传统的等效线性化方法(ELM)是参数化方法相反,TELM是非参数线性化方法,因为等效线性系统是根据其冲激响应函数进行数值定义的,而无需定义参数化的线性系统。在获得了尾部等效线性系统(TELS)后,利用TELS进行了线性随机振动分析,以确定非线性响应的各种统计数据,例如概率分布,平均水平交叉率和首次通过概率。研究了TELS的几个重要特征,这些特征与TELM的计算方面有重要关系。发现,TELS严格取决于感兴趣的响应阈值。通过这种依赖性,TELM能够预测非线性响应的非高斯分布并准确预测尾部概率,这对于可靠性和安全性评估至关重要。当对响应的全部分布感兴趣时,这种对响应阈值的依赖性要求获得一系列阈值的设计点。为此,开发了一种算法,该算法可以有效地计算响应阈值序列的设计点。其次,发现TELS不变于激励比例。此属性使得可以通过一次确定TELS来估计一系列定标激发(易损性分析)的响应统计信息。第三,发现TELS仅在一定程度上取决于宽带激发的频率含量。此属性使我们可以将获得的白噪声激发的TELS用于估计其他宽带激发的响应统计量。最后,对于非平稳响应,发现选定时间点的TELS提供了对首次通过概率的相当合理的近似值。使用该近似值,在单个时间点确定的TELS足以分析稳态和非稳态响应。单自由度和多自由度,非降解磁滞系统的示例应用说明了该方法的各种功能。比较

著录项

  • 作者

    Fujimura, Kazuya.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号