首页> 外文学位 >Silica colloidal crystals as new materials for biomolecule separations.
【24h】

Silica colloidal crystals as new materials for biomolecule separations.

机译:二氧化硅胶体晶体作为生物分子分离的新材料。

获取原文
获取原文并翻译 | 示例

摘要

Within the field of biomolecule analysis, research in separation techniques is immeasurable. The increasingly complex samples, particularly in proteomics, demands higher speed than is offered by currently available techniques. I have investigated silica colloidal crystals as a new medium for bioanalytical separations. Monodisperse silica colloids can be synthesized by the Stober process [1] and assembled into crystalline structures [2]. High packing density, increased surface/volume ratio, optical diffraction and narrow photonic band gaps are potentially useful characteristics of the long-range ordering of silica colloids in the structure of colloidal crystals [3, 4]. Silica colloidal crystals developed in this study were used in a wide variety of bioanalytical techniques including no-flow electrochromatography, sieving elecrophoresis, isoelectric focusing, and microarray analysis. The steps taken to develop the material, and its potential applications will be discussed further. The resulting material is robust for practical analytical applications, uniform in pore size to produce high efficiency, and chemically active for surface modification.; Silica colloidal crystals made from the previous methods owe their limitations for practical analytical use to the formation of cracks after crystallization, are extremely fragile, and can come apart easily in aqueous solutions. The full potential for practical applications of silica colloidal crystals can be realized upon sufficient hardening to withstand sonication for at least 3 h. The steps needed to prepare the material include calcination at 350°C, 450°C, 550°C in succession before self-assembly to avoid cracks, while sintering at 1000°C after crystallization increases stability. Rehydroxylation of the silica surface is performed because the surface becomes dehydroxylated almost to completion during sintering. A base additive is used for rehydroxylation because it catalyzes the hydrolysis of the Si-O-Si siloxane bridge sites to form silanol groups. This approach for making silica colloidal crystals results in long-range ordering, homogeneous pore size, free of cracks, sufficiently robust for handling, and chemically reactive surface, therefore, it is expected to advance such fields as photonic crystals, micro-fluidics, microarray, electrochromatography and electrophoresis.
机译:在生物分子分析领域,分离技术的研究是不可估量的。越来越复杂的样品,尤其是蛋白质组学中的样品,需要比当前可用技术更高的速度。我研究了二氧化硅胶体晶体,作为生物分析分离的新介质。单分散二氧化硅胶体可以通过Stober方法[1]合成并组装成晶体结构[2]。高堆积密度,增加的表面/体积比,光学衍射和狭窄的光子带隙是胶体晶体结构中硅胶胶体的长程有序排列的潜在有用特性[3,4]。在这项研究中开发的硅胶胶体晶体已用于多种生物分析技术中,包括无流动电色谱,筛分电泳,等电聚焦和微阵列分析。开发该材料所采取的步骤及其潜在应用将进一步讨论。所得材料对于实际分析应用是坚固的,孔径均匀以产生高效率,并且对表面改性具有化学活性。由先前方法制得的二氧化硅胶体晶体由于其在实际分析用途中的局限性,导致结晶后形成裂纹,非常脆弱,并且可以在水溶液中容易分解。通过充分硬化以经受声波作用至少3小时,可以实现二氧化硅胶体晶体在实际应用中的全部潜力。制备该材料所需的步骤包括在自组装之前先在350°C,450°C,550°C下连续煅烧以避免裂纹,而在结晶后在1000°C进行烧结可提高稳定性。进行二氧化硅表面的再羟基化是因为在烧结过程中该表面几乎完全脱羟基。碱添加剂用于重新羟基化,因为它催化Si-O-Si硅氧烷桥键位的水解以形成硅烷醇基团。这种制备二氧化硅胶体晶体的方法可产生长程有序,均匀的孔径,无裂纹,足以处理的坚固性以及具有化学反应性的表面,因此,有望发展诸如光子晶体,微流体,微阵列等领域,电色谱和电泳。

著录项

  • 作者

    Le, Thai Van.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号