首页> 外文学位 >Electrical manipulation of spin-orbit coupling in semiconductor heterostructures.
【24h】

Electrical manipulation of spin-orbit coupling in semiconductor heterostructures.

机译:半导体异质结构中自旋轨道耦合的电操纵。

获取原文
获取原文并翻译 | 示例

摘要

Spin-orbit coupling in semiconductors relates the spin of an electron to its momentum and provides a pathway for electrically initializing and manipulating electron spins. This coupling creates momentum-dependent spin-splittings related to the inversion asymmetries of the semiconductor heterostructure. We demonstrate that we can regulate these spin-splittings in bulk semiconductor epilayers with strain and in semiconductor heterostructures using quantum confinement and orbital quantization. Using spatially- and time-resolved optical spectroscopy, we can map these spin-splittings and observe their effects on the electron spin dynamics. In addition, we study electrically-generated spin polarization in bulk semiconductors and quantum wells. Measurements of the spin Hall effect in a two-dimensional electron gas confined in (110) AlGaAs quantum wells reveal a complex structure to the spin accumulation, which is in contrast to measurements on bulk epilayers. In addition, the current-induced spin polarization for the (110) quantum wells is oriented out-of-plane. The experiments map the strong dependence of the current-induced spin polarization to the crystal axis along which the electric field is applied, reflecting the anisotropy of the spin-orbit interaction. Finally, we have performed measurements of the spin Hall effect in structures patterned on GaAs epilayers that allow us to separate the effects of the sample boundary from the boundary of the electric field. These channels with transverse arms allow us to determine that the spin Hall effect produces a transverse bulk spin current and that this spin current can drive spin transport over macroscopic distances in bulk GaAs.
机译:半导体中的自旋轨道耦合将电子的自旋与其动量相关联,并为电子自旋和电子自旋提供了一条途径。这种耦合产生与半导体异质结构的反型不对称性有关的依赖于动量的自旋分裂。我们证明,我们可以使用量子限制和轨道量化来调节具有应变的半导体自发层和半导体异质结构中的这些自旋分裂。使用空间和时间分辨光谱,我们可以绘制这些自旋分裂图,并观察它们对电子自旋动力学的影响。此外,我们研究了体半导体和量子阱中电产生的自旋极化。在受限于(110)AlGaAs量子阱中的二维电子气中自旋霍尔效应的测量结果揭示了自旋积累的复杂结构,这与在体外延层上的测量相反。此外,(110)量子阱的电流感应自旋极化取向是平面外的。实验将电流感应的自旋极化强烈依赖于施加电场的晶轴,反映了自旋轨道相互作用的各向异性。最后,我们对在GaAs外延层上构图的结构中的自旋霍尔效应进行了测量,这使我们能够将样品边界的影响与电场的边界分开。这些带有横向臂的通道使我们能够确定自旋霍尔效应会产生横向体自旋电流,并且该自旋电流可以驱动体GaAs中宏观距离的自旋输运。

著录项

  • 作者

    Sih, Vanessa.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号