首页> 外文学位 >Exploring the relationship between secondary structure and native topology in protein domains.
【24h】

Exploring the relationship between secondary structure and native topology in protein domains.

机译:探索蛋白质结构域二级结构与天然拓扑之间的关系。

获取原文
获取原文并翻译 | 示例

摘要

Since the introduction of Pauling's groundbreaking model, numerous experiments have shown that hydrogen-bonded secondary structure is an important factor in protein folding. Under folding conditions, the linear polypeptide chain can form marginally stable elements of secondary structure on a rapid time scale. Such elements, which are in dynamic equilibrium with their respective coil states, interact with one another, further organizing and stabilizing the protein. We hypothesize that this latter step is rate limiting in the folding of a protein domain. To validate this idea, I tested whether the logarithm of the folding rate constant is linearly correlated with a protein's secondary structure content. The observed, large correlation coefficient is consistent with our hypothesis and underscores the importance of secondary structure elements in organizing the folding process.; Przytycka and Rose proposed that the sequence of secondary structure elements is sufficient to capture a protein's native conformation, and they tested this proposal for a large collection of representative protein domains by showing that the hierarchic tree derived by aligning secondary structure sequences is almost identical to the one derived by direct three-dimensional structure comparison.; To extend this idea, I developed a dynamic programming algorithm to compare domain structures by aligning mesostate sequences, where a mesostate is a coarse-grained representation of a backbone torsion angle. Comparison of the performance of this algorithm against several existing fold recognition algorithms further supports the proposition that the sequence of secondary structure elements determines the protein's three-dimensional conformation.; To retrieve the information about native conformation that is implicit in the mesostate sequence, I developed a fragment replacement Monte-Carlo algorithm that uses only this information to generate tertiary structure. Specifically, a crude potential including only hydrogen bonding, steric exclusion, and spatial confinement was sufficient to regenerate native-like backbone topology from the coarse-grained torsion angle restraints imposed by the native mesostate sequence.; This dissertation is divided into three major parts, each of which corresponds to one of the three topics mentioned above. Together, these three inter-related approaches highlight the central role that secondary structure plays in the protein folding process.
机译:自鲍林(Pau​​ling)的突破性模型引入以来,大量实验表明,氢键键合的二级结构是蛋白质折叠的重要因素。在折叠条件下,线性多肽链可以在快速的时间尺度上形成二级结构的边缘稳定元件。这些与它们各自的螺旋状态处于动态平衡状态的元素彼此相互作用,从而进一步组织和稳定蛋白质。我们假设后面的步骤是蛋白质结构域折叠中的速率限制。为了验证这一想法,我测试了折叠速率常数的对数是否与蛋白质的二级结构含量线性相关。观察到的大相关系数与我们的假设相符,并强调了二级结构元素在组织折叠过程中的重要性。 Przytycka和Rose提出二级结构元素的序列足​​以捕获蛋白质的天然构象,并且他们通过证明由二级结构序列比对而得的分层树几乎与蛋白质结构相同,从而测试了该提议是否具有大量代表性蛋白质结构域。一种通过直接三维结构比较得出。为了扩展这个想法,我开发了一种动态编程算法,通过对齐中间状态序列来比较域结构,其中中间状态是主干扭转角的粗粒度表示。该算法与几种现有的折叠识别算法的性能比较进一步支持这样的主张,即二级结构元素的序列决定了蛋白质的三维构象。为了检索在中间态序列中隐含的有关天然构象的信息,我开发了片段替换蒙特卡洛算法,该算法仅使用此信息来生成三级结构。具体而言,仅包含氢键,空间排阻和空间限制的粗势足以从天然的中间状态序列施加的粗粒度扭转角约束中再生出天然的骨架结构。本文分为三个主要部分,每个部分对应于上述三个主题之一。这三种相互关联的方法共同强调了二级结构在蛋白质折叠过程中的核心作用。

著录项

  • 作者

    Gong, Haipeng.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Bioinformatics.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号