首页> 外文学位 >Nano-scale large area gap control for high throughput electrically induced micro-patterning.
【24h】

Nano-scale large area gap control for high throughput electrically induced micro-patterning.

机译:纳米级大面积间隙控制可实现高通量电致微图案化。

获取原文
获取原文并翻译 | 示例

摘要

Micro- and nano-scale patterning is essential to the fabrication of various kinds of devices including electronic circuits, optical devices, optoelectronic devices, thin film heads for magnetic storage, displays, etc. There are several current and emerging applications that specifically require regular arrays of repeating patterns such as gratings, posts, and holes. At the nano-scale, for replication using lithography techniques such as optical lithography and imprint lithography, the cost of making the master can be a significant portion of the fabrication cost, particularly if small batches of customized parts are required.; High resolution patterning using electric fields allows the creation of micro- and nano-scale structures using low resolution masters. Most of the literature to date has focused on using high glass transition temperature polymers that need to be heated to induce the patterning process. While this allows the ability to use a wide variety of materials, it leads to poor throughput as it can take several minutes to complete the patterning of one device region. The patterning speed can be increased by using photocurable, low viscosity monomers instead of high glass transition temperature polymers. Process control requires a tool that can control the parallelism of the gap between a conductive wafer and template to the nanometer level over large areas. The tool must have high resolution orientation and position control and high apparent stiffness to prevent the electric field from pulling the template and wafer together.; In this research, high stiffness mechanism designs were investigated first. Such designs proved impractical, with travel, stiffness, and maximum side load requirements difficult or extremely expensive to meet. Therefore, a novel precision machine concept was explored. A parallel mechanism that is simultaneously actuated by piezo actuators and by voice coils was studied. Feedforward compensation of the applied electric force using voice coils was used to reduce the need for a stiff mechanism. The result was the Hybrid Active Gap Tool (HAGT), a 3-RPS parallel mechanism which has the ability to significantly enhance the quality of electrically induced patterning.; Performance of the Hybrid Active Gap Tool was validated using a set of gap control experiments. The new design and control system resulted in very high precision orientation alignment needed for gap control. Without voice coil compensation, the tool has a stiffness of less than 3N/mum. With voice coil compensation, the apparent stiffness of the tool varies from a minimum of 30N/mum up to nearly infinite stiffness and into negative stiffness if overcompensation is intentionally used. Voice coil compensation allows the tool to meet the stringent performance requirements of the patterning process without the need for a high stiffness mechanism. Gaps as small as 400nm were maintained with the electric field applied and the gap changed by less than 5nm from the nominal 400nm during the process. Smaller gaps can be achieved with improvements in template mesa height calibration and better understanding of piezo actuated mechanism designs.
机译:微米和纳米级图案化对于制造各种类型的设备至关重要,包括电子电路,光学设备,光电设备,用于磁存储的薄膜头,显示器等。目前有许多新兴应用特别需要规则阵列重复图案,例如光栅,柱子和孔。在纳米尺度上,对于使用光刻技术(例如光学光刻和压印光刻)进行复制,制造母版的成本可能是制造成本的很大一部分,特别是在需要小批量定制零件的情况下。使用电场进行高分辨率图案化可以使用低分辨率母版创建微米和纳米级结构。迄今为止,大多数文献都集中在使用高玻璃化转变温度的聚合物上,该聚合物需要加热以引发图案化过程。尽管这允许使用多种材料,但是由于完成一个设备区域的图案化可能需要几分钟,因此会导致吞吐量下降。通过使用可光固化的低粘度单体代替高玻璃化转变温度的聚合物,可以提高图案形成速度。过程控制需要一种工具,该工具可以在大面积上将导电晶圆和模板之间的间隙的平行度控制为纳米级。该工具必须具有高分辨率的方向和位置控制以及高的表观刚度,以防止电场将模板和晶片拉在一起。在这项研究中,首先研究了高刚度机构设计。这种设计被证明是不切实际的,难以满足行程,刚度和最大侧向载荷的要求或极其昂贵。因此,探索了一种新颖的精密机器概念。研究了由压电致动器和音圈同时致动的并联机构。使用音圈对施加的力进行前馈补偿可减少对刚性机构的需求。结果是混合主动间隙工具(HAGT),这是一种3-RPS并联机构,能够显着提高电感应图案的质量。使用一组间隙控制实验验证了混合主动间隙工具的性能。新的设计和控制系统可实现间隙控制所需的非常高精度的定向对齐。没有音圈补偿,该工具的刚度小于3N / m。通过音圈补偿,如果有意使用过度补偿,则工具的视在刚度从最小30N / mm到几乎无限的刚度变化为负的刚度。音圈补偿使该工具能够满足图案化工艺的严格性能要求,而无需使用高刚度的机构。在施加电场的情况下,可以保持小至400nm的间隙,并且在此过程中,间隙与标称400nm的变化小于5nm。通过改进模板台面高度校准并更好地理解压电致动机构设计,可以实现较小的间隙。

著录项

  • 作者

    Raines, Allen Lee.;

  • 作者单位

    The University of Texas at Austin.$bMechanical Engineering.;

  • 授予单位 The University of Texas at Austin.$bMechanical Engineering.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号