首页> 外文学位 >An integrated, lossless, and accurate current-sensing technique for high-performance switching regulators.
【24h】

An integrated, lossless, and accurate current-sensing technique for high-performance switching regulators.

机译:一种用于高性能开关稳压器的集成,无损且精确的电流检测技术。

获取原文
获取原文并翻译 | 示例

摘要

Switching power converters are an, indispensable part of every battery-operated consumer electronic product, nourishing regulated voltages to various subsystems. In these circuits, sensing the inductor current is not only necessary for protection and control but also is critical to be done in a lossless and accurate fashion for state-of-the-art advanced control techniques, which are devised to optimize transient response, increase the efficiency over a wide range of loads, eliminate off-chip compensation networks, and integrate the power inductor. However, unavailability of a universal, integrable, lossless, and accurate current-sensing technique impedes the realization of those advanced techniques and limit their applications. Unfortunately, use of a conventional series sense resistor is not recommended in high-performance, high-power switching regulators where more than 90% efficiency is required because of their high current levels. A handful of lossless current-sensing techniques are available but their accuracies are significantly lower than the traditional sense resistor scheme.; Among available lossless but not accurate techniques, an off-chip, filter-based method that uses a tuned filter across the inductor to estimate current flow and its accuracy is dependent on the inductance and its equivalent series resistance (ESR) was selected for improvement because of its inherent continuous and low-noise operation. A schemes is proposed to adapt the filter technique for integration by automatically adjusting bandwidth and gain of an on-chip programmable gm-C filter to the off-chip power inductor during the system start-up through measuring the inductance and its ESR with on-chip generated test currents.; The IC prototype in AMI's 0.5-mum CMOS process achieved overall DC and AC gain errors of 8% and 9%, respectively, at 0.8 A DC load and 0.2 A ripple currents for inductors from 3.5 muH-14 muH and ESR from 48 mO to 384 mO when lossless, state-of the-art schemes achieve 20--40% error and only when the nominal specifications of power component (power MOSFET or inductor) are known. Moreover, the proposed circuit improved the efficiency of a test bed current-mode controlled switching regulator by more than 2.6% compared to the traditional sense resistor technique with a 50 mO sense resistor.
机译:开关电源转换器是每种电池供电的消费类电子产品不可或缺的一部分,可为各个子系统提供稳定的稳压电压。在这些电路中,感测电感器电流不仅是保护和控制所必需的,而且对于以最先进的先进控制技术(旨在优化瞬态响应,提高设计效率)而以无损且准确的方式进行检测也至关重要。在各种负载下的效率,消除了片外补偿网络,并集成了功率电感器。但是,无法使用通用,可集成,无损且精确的电流感测技术会阻碍这些先进技术的实现,并限制其应用。不幸的是,在高性能,大功率开关稳压器中,由于其高电流水平而需要超过90%的效率,因此不建议使用传统的串联检测电阻。可以使用几种无损电流检测技术,但其准确度明显低于传统的检测电阻器方案。在可用的无损但不准确的技术中,基于片外滤波器的方法是使用跨电感器的调谐滤波器来估计电流,其精度取决于电感,因此选择了其等效串联电阻(ESR)来进行改进,因为固有的连续低噪声运行。提出了一种方案,通过在系统启动时通过测量电感和其ESR(通过在系统上进行测量)来自动调整片上可编程gm-C滤波器对片外功率电感器的带宽和增益,从而使滤波器技术适用于集成。芯片产生的测试电流。 AMI的0.5微米CMOS工艺的IC原型在0.8μA直流负载和0.2μA纹波电流下,从3.5μH-14μH的电感器和从48 mO到ESR的ESR,分别实现了8%和9%的总体DC和AC增益误差。仅当已知功率组件(功率MOSFET或电感器)的标称规格时,最新的无损方案才能实现20--40%的误差时为384 mO。此外,与采用50 mO感应电阻的传统感应电阻技术相比,该电路将测试台电流模式控制的开关稳压器的效率提高了2.6%以上。

著录项

  • 作者

    Forghani-zadeh, H. Pooya.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 290 p.
  • 总页数 290
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号