首页> 外文学位 >Biosolar energy generation and harvesting from biomolecule-copolymer hybrid systems.
【24h】

Biosolar energy generation and harvesting from biomolecule-copolymer hybrid systems.

机译:从生物分子-共聚物混合系统中产生和收集生物太阳能。

获取原文
获取原文并翻译 | 示例

摘要

Alternative energy sources have become an increasingly important topic as energy needs outpace supply. Furthermore, as the world moves into the digital age of portable electronics, highly efficient and lightweight energy sources will need to be developed. Current technology, such as lithium ion batteries, provide enough power to run portable electronics for hours or days, but can still allow for improvement in their power density (W/kg). Utilizing energy-transducing membrane proteins, which are by nature highly efficient, it is possible to engineer biological-based energy sources with energy densities far greater than any solid-state systems. Furthermore, solar powered membrane proteins have the added benefit of a virtually unlimited supply of energy.; This work has developed protein-polymer hybrid films and nanoscale vesicles for a variety of applications from fuel-cell technology to biological-based photovoltaics. Bacteriorhodopsin (BR), a light-activated proton pump, and Cytochrome C Oxidase (COX), a protein involved in the electron transport chain in mitochondria, were reconstituted into biomimetic triblock copolymer membranes. Block copolymer membranes mimic the amphiphilic nature of a natural lipid bilayer but exhibit greater mechanical stability due to UV-polymerizable endgroups. In BR/COX functionalized nanovesicles, proton gradients generated by the light-activated proton pumping of BR are used to drive COX in reverse to generate electrons, providing a hybrid biologically-active polymer to convert solar energy to chemical energy, and finally to electrical energy.; This work has found protein activity in planar membranes through the photoelectric current generation by BR and the proton pumping activity of BR-functionalized polymer membranes deposited onto proton exchange membranes, as well as the coupled functionality of BR and COX through current generation in cyclic voltammetry and direct current measurements. Current switching between light and dark environments of composite BR/COX polymer vesicles show a light-dependent current generation with current changes as high as 10muA. Furthermore, electrode modifications were made using polymer and polymer/carbon nanotube (CNT) coatings as anti-absorbent and conductive anti-absorbent layers for the purpose of a more robust electrode. These findings have shown that biological functionality can be engineered into synthetic polymers to make hybrid devices.
机译:随着能源需求超过供应,替代能源已成为越来越重要的话题。此外,随着世界进入便携式电子设备的数字时代,将需要开发高效,轻便的能源。当前的技术(例如锂离子电池)可提供足够的功率来运行便携式电子设备数小时或数天,但仍可以提高其功率密度(W / kg)。利用本质上高效的能量转换膜蛋白,可以设计能量密度远高于任何固态系统的生物基能源。此外,太阳能膜蛋白具有几乎无限的能量供应的额外好处。这项工作开发了蛋白质-聚合物杂化膜和纳米级囊泡,可用于从燃料电池技术到生物光伏的各种应用。细菌视紫红质(BR),一种光活化的质子泵,以及细胞色素C氧化酶(COX),一种参与线粒体电子传输链的蛋白质,被重构成仿生三嵌段共聚物膜。嵌段共聚物膜模仿天然脂质双层的两亲性质,但是由于可UV聚合的端基而表现出更大的机械稳定性。在BR / COX官能化的纳米囊泡中,BR的光激活质子泵浦产生的质子梯度被用来反向驱动COX产生电子,从而提供了一种混合的生物活性聚合物,将太阳能转化为化学能,最终转化为电能。 。;这项工作发现了通过BR产生的光电电流以及沉积在质子交换膜上的BR功能化聚合物膜的质子泵浦活性,以及​​通过循环伏安法中电流产生的BR和COX的耦合功能,在平面膜中具有蛋白质活性。直流测量。复合BR / COX聚合物囊泡在明暗环境之间的电流切换显示出与光有关的电流产生,电流变化高达10μA。此外,出于更坚固的电极的目的,使用聚合物和聚合物/碳纳米管(CNT)涂层作为抗吸收层和导电抗吸收层进行了电极修饰。这些发现表明,生物学功能可以被工程化为合成聚合物以制造混合设备。

著录项

  • 作者

    Chu, Bong-Chieh Benjamin.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Biomedical.; Energy.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号