首页> 外文学位 >Characterizing carbon-dioxide fluxes from oceans and terrestrial ecosystems.
【24h】

Characterizing carbon-dioxide fluxes from oceans and terrestrial ecosystems.

机译:表征来自海洋和陆地生态系统的二氧化碳通量。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the processes that change the amount of carbon stored in the ocean and in the land biota, with their implications for future climate and ecology, is a fundamental goal of earth-system science. I have developed, refined, and applied several approaches that combine data analysis and modeling to better understand processes affecting carbon fluxes.; 1. Using a database of tree-ring widths from some 40,000 trees, I looked at the impact of large volcanic eruptions in the past millennium on tree growth globally. I found a decline in growth north of 45°N lasting for several years after eruptions, presumably due to eruption-associated cooling, and no significant impact at lower latitudes. This argues against the hypothesis that the increased diffuse-light fraction due to volcanic aerosols greatly increased plant carbon uptake after the 1991 Pinatubo eruption, suggesting that other explanations are needed for the slow increase in atmospheric CO 2 levels in the early 1990s.; 2. I applied generalized cross-validation (GCV) to the problem of estimating a regional CO2 source/sink pattern consistent with observed geographic variation in atmosphere CO2 levels. I showed that GCV works for selecting data and regional-flux uncertainty levels to assume for this inverse problem; these have usually been estimated rather arbitrarily, though they can have a large impact on the solution.; 3. The air-sea gas transfer velocity determines how fast the surface ocean adjusts to a change in atmospheric composition, and hence is important for understanding ocean CO2 uptake. By modeling the ocean's adjustment to fluctuations in atmospheric carbon isotope composition and analyzing a variety of atmosphere and ocean bomb-14C and 13C measurements, I estimated regional and global mean gas transfer velocities, concluding that there may be less latitudinal variation in the gas transfer velocity than usually thought---implying, for example, relatively low CO2 uptake in the Southern Ocean.
机译:了解改变海洋和陆地生物区中碳存储量的过程及其对未来气候和生态的影响,是地球系统科学的基本目标。我已经开发,改进和应用了几种结合数据分析和建模的方法,以更好地了解影响碳通量的过程。 1.我使用了大约40,000棵树木的年轮宽度数据库,研究了过去千年中大规模火山喷发对全球树木生长的影响。我发现喷发后北纬45°N以北的增长持续了数年,大概是由于与喷发有关的降温,在低纬度地区没有明显的影响。这与以下假设背道而驰:在1991年皮纳图博火山喷发后,由于火山气溶胶引起的散射光分数的增加大大增加了植物的碳吸收,这表明对于1990年代初期大气中CO 2的缓慢增加还需要其他解释。 2.我将广义交叉验证(GCV)应用于估算与观测到的大气CO2水平地理变化相一致的区域CO2源/汇模式的问题。我证明了GCV可以选择数据和区域通量不确定性水平来假设该反问题。尽管它们可能对解决方案产生很大的影响,但是这些估计通常是相当随意的。 3.空气-海洋气体的传输速度决定了海洋表面适应大气成分变化的速度,因此对于理解海洋二氧化碳的吸收非常重要。通过模拟海洋对大气碳同位素组成波动的调整并分析各种大气和海洋炸弹的14C和13C测量值,我估算了区域和全球平均气体传输速度,从而得出气体传输速度的纬度变化可能较小的结论。比通常认为的要大-例如,这意味着南大洋的二氧化碳吸收量相对较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号