首页> 外文学位 >Probing dynamic processes in living cells with high time resolution, spatial precision, and chemical selectivity.
【24h】

Probing dynamic processes in living cells with high time resolution, spatial precision, and chemical selectivity.

机译:以高时间分辨率,空间精度和化学选择性探测活细胞中的动态过程。

获取原文
获取原文并翻译 | 示例

摘要

Optical microscopy has been indispensable for cell biology. Many cellular processes, however, cannot be studied with existing imaging techniques because of insufficient chemical selectivity, spatial precision, or time resolution. Here, we present several experiments in which we develop and apply advanced optical microscopy to probe dynamic processes in living cells by overcoming the above difficulties.; Specifically, we have used coherent anti-Stokes Raman scattering (CARS) microscopy, a nonlinear, vibrational imaging modality, to study lipogenesis in fat and liver cells, processes associated with obesity and hepatitis, respectively. Lipids are difficult to visualize due to the lack of noninvasive labeling methods, but can be imaged with CARS microscopy in living, unstained cells with high chemical selectivity. With CARS, we monitored the entire fat cell differentiation process and identified a transient period during which lipid droplets (LDs) disappear in the cytoplasm, a previously unrecognized phenomenon. By combining CARS with two-photon fluorescence microscopy, we imaged LDs and hepatitis C (HCV) viral RNA simultaneously in liver cells, and established spatial and temporal correlations between lipogenesis and HCV RNA replication. Furthermore, under carefully optimized illumination conditions, we studied the active transport of LDs, a largely unknown process, in a variety of cell types. We show that the active transport of LDs is regulated, like most other cellular processes, and is correlated with lipid metabolism. These findings provide important information about the roles of lipids in various cellular processes, and demonstrate that CARS microscopy is a powerful tool for probing cellular dynamics.; In parallel, we have developed in vivo particle tracking assays with millisecond to microsecond time resolution and nanometer spatial precision to study the workings of the motor proteins kinesin and dynein that carry cargoes along microtubules. In vitro studies have shown that both motors advance with discrete steps as small as 8 nm in each ATPase enzymatic cycle. Observation of these steps is essential to dissecting their chemomechanical coupling mechanisms. The individual steps, however, are much more difficult to observe in vivo because of the high motor velocities arising from saturating cellular ATP concentration and involvement of multiple motors carrying the same cargo. By using a fast CCD camera to track the movements of vesicles containing endocytosed quantum dots, we observed stepwise movements in both the kinesin and dynein directions with ∼400 mus time resolution and 1.5 nm spatial precision. More importantly, we have achieved 25 mus time resolution and 1.5 nm spatial precision by tracking endocytosed gold nanoparticles (100-200 nm in diameter) with a quadrant photodiode in an objective-type dark field microscope. Individual steps of kinesin and dynein can now be resolved in the entire range of in vivo cargo velocities (0-8 mum/s). We show that while both kinesin and dynein take 8 nm steps in vivo, dynein also takes 12, 16, 20, and 24 nm steps in a living cell. Dynein also has variable step sizes when stepping backward. Interestingly, it takes smaller steps when carrying larger cargoes due to higher drag force, in both the forward and backward directions. These findings suggest that dynein functions like a car's transmission, consistent with a previously proposed 'gear' mechanism of dynein stepping. Lastly, useful information about the coordination among multiple motors can be inferred from our data. Our assays open up exciting new possibilities for studying molecular motors in living cells.
机译:光学显微镜对于细胞生物学来说是必不可少的。但是,由于化学选择性,空间精度或时间分辨率不足,许多细胞过程无法用现有的成像技术进行研究。在这里,我们提出了几个实验,在这些实验中,我们克服了上述困难,开发并应用了先进的光学显微镜来探测活细胞中的动态过程。具体而言,我们已使用相干的抗斯托克斯拉曼散射(CARS)显微镜(一种非线性的振动成像方式)来研究脂肪和肝细胞中的脂肪生成,与肥胖症和肝炎有关的过程。脂质由于缺乏非侵入性标记方法而难以可视化,但可以使用CARS显微镜在具有高化学选择性的未染色活细胞中成像。借助CARS,我们监测了整个脂肪细胞分化过程,并确定了一个短暂的时期,在此期间脂质滴(LDs)在细胞质中消失,这是以前无法识别的现象。通过将CARS与双光子荧光显微镜相结合,我们同时在肝细胞中对LDs和丙型肝炎(HCV)病毒RNA成像,并建立了脂肪形成与HCV RNA复制之间的时空相关性。此外,在精心优化的照明条件下,我们研究了LD在多种细胞类型中的主动转运,这是一个未知的过程。我们显示,像大多数其他细胞过程一样,LDs的主动转运受到调节,并且与脂质代谢有关。这些发现提供了有关脂质在各种细胞过程中的作用的重要信息,并证明了CARS显微镜是探测细胞动力学的强大工具。同时,我们已经开发出了具有毫秒级至微秒级时间分辨率和纳米级空间精度的体内颗粒跟踪测定法,以研究沿微管运载货物的运动蛋白驱动蛋白和动力蛋白的功能。体外研究表明,在每个ATPase酶促循环中,两种电机均以最小8 nm的离散步长前进。观察这些步骤对于剖析其化学机械耦合机理至关重要。但是,由于饱和的细胞ATP浓度以及携带相同货物的多个马达的参与会产生较高的马达速度,因此在体内很难观察到各个步骤。通过使用快速CCD相机跟踪包含胞吞量子点的囊泡的运动,我们观察到了在驱动蛋白和动力蛋白方向上的逐步运动,时间分辨率约为400毫秒,空间精度为1.5 nm。更重要的是,通过在物镜型暗场显微镜中用象限光电二极管跟踪内吞的金纳米颗粒(直径为100-200 nm),我们已经达到了25毫秒的时间分辨率和1.5 nm的空间精度。现在,可以在整个体内货物速度(0-8 mum / s)范围内解析驱动蛋白和动力蛋白的各个步骤。我们显示,虽然驱动蛋白和动力蛋白在体内都采取8 nm步骤,但动力蛋白在活细胞中也采取12、16、20和24 nm步骤。当向后退时,Dynein也具有可变的步长。有趣的是,由于在向前和向后方向上都具有较高的拖曳力,因此在运载较大的货物时采取较小的步骤。这些发现表明,动力蛋白的作用就像汽车的变速器一样,与先前提出的动力蛋白步进的“齿轮”机制相一致。最后,可以从我们的数据中推断出有关多个电动机之间协调的有用信息。我们的测定法为研究活细胞中的分子马达开辟了令人兴奋的新可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号