首页> 外文学位 >Mathematical models in microfluidics: Capillary electrophoresis and sessile drop physics.
【24h】

Mathematical models in microfluidics: Capillary electrophoresis and sessile drop physics.

机译:微流体学中的数学模型:毛细管电泳和无滴物理。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis two different microfluidic applications are modeled mathematically and solved by analytical and numerical methods. These include (i) modeling kinetics of binding interactions during electrophoresis, and (ii) determining the static shapes of sessile droplets on various patterned surfaces and subject to electrostatic actuation. These problems cover the two most important approaches in the emerging field of microfluidics, which are micro-channel-based (or continuous) and micro-droplet based (or digital).; For the micro-channel case, we focus upon on-chip capillary electrophoresis of multiple interacting species. Specifically, electrophoresic transport of three chemically reacting species, two of which can bind reversibly to form a third, is mathematically modeled. The species are assumed to move horizontally through a long channel. By considering small perturbations of the system about equilibrium, the governing advection-reaction-diffusion equations can be linearized and studied via the method of moments. The result is a set of coupled ordinary differential equations for the moments that can be solved analytically. Analysis of the longtime evolution of the moments yields mean velocities and dispersion coefficients for each species. The results provide a method for measuring the rate and equilibrium constants of binding reactions using capillary electrophoresis.; For the case of digital or droplet microfluidics, we focus on determining the shape of sessile drops on patterned surfaces or under electrowetting actuation. The current motivation for studying this problem is the fact that the development and optimization of fluidic devices require a detailed understanding of interfacial phenomena and the influence of energy modulations. In this dissertation we investigate both analytically and numerically the surface morphology of liquids deposited onto lithographically patterned surfaces and influenced by electrical fields. In our approach, the equilibrium shape of a constant, volume droplet on a patterned surface is determined by minimizing the total free energy; which includes all contributions from body, surface and electrostatic forces. A novel formulation, in the form of a relaxation-type partial differential equation with constraints, is presented along with a numerical procedure, based on finite differences, to solve for a multitude of drop topologies.
机译:本文对两种不同的微流体应用进行了数学建模,并通过分析和数值方法进行了求解。这些包括(i)建模电泳过程中结合相互作用的动力学,以及(ii)确定各种图案化表面上易受静电作用的无蒂液滴的静态形状。这些问题涵盖了新兴的微流体领域中最重要的两种方法,即基于微通道的(或连续的)和基于微液滴的(或数字的)。对于微通道情况,我们专注于多种相互作用物种的片上毛细管电泳。具体而言,对三种化学反应物质的电泳传输进行了数学建模,其中两种化学反应物质可逆结合形成第三种。假定该物种通过长通道水平移动。通过考虑系统对平衡的微小扰动,可以对控制的对流-反应-扩散方程进行线性化,并通过矩量法进行研究。结果是可以解析地求解矩的一组耦合的常微分方程。矩的长期演变分析得出每种物种的平均速度和弥散系数。结果提供了使用毛细管电泳测量结合反应的速率和平衡常数的方法。对于数字微滴或微滴微流控,我们重点研究确定带图案的表面上或在电润湿驱动下的无滴液滴的形状。研究该问题的当前动机是这样的事实,即流体装置的开发和优化需要对界面现象和能量调制的影响进行详细的了解。在本文中,我们分析和数值研究了沉积在光刻图案表面上并受电场影响的液体的表面形态。在我们的方法中,通过最小化总自由能来确定图案化表面上恒定,体积小滴的平衡形状。其中包括来自身体,表面和静电力的所有贡献。提出了一种具有约束条件的松弛型偏微分方程形式的新颖公式,以及基于有限差分的数值程序,以解决多种液滴拓扑。

著录项

  • 作者

    Daneshbod, Yousef.;

  • 作者单位

    The Claremont Graduate University.;

  • 授予单位 The Claremont Graduate University.;
  • 学科 Applied Mechanics.; Mathematics.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;数学;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号