首页> 外文学位 >Studies of dynamics of infectious diseases using mathematical models.
【24h】

Studies of dynamics of infectious diseases using mathematical models.

机译:使用数学模型研究传染病的动力学。

获取原文
获取原文并翻译 | 示例

摘要

This thesis centers on the study of transmission dynamics of infectious diseases using mathematical models. It includes two main topics. The first one concerns the evolutionary dynamics of the human-schistosome-snail system. The second topic is on the evaluation of disease control strategies for directly transmitted infections such as influenza and SARS.;The models attempt to answer specific biological questions that are of interest to biologists and policy-makers for public health. The model for human-schistosomesnail interactions is used to study questions including the impact of drug-treatment of human hosts and drug-resistance of parasites within human hosts as well as the role of parasite virulence on the the evolutionary dynamics of intermediate snail hosts. The models for directly transmitted diseases are employed to generate helpful information that can assist policy-makers in disease control and intervention.;More specifically, for the human-schistosome-snail system, our model includes two snail host types and a single parasite strain. An age-structure of human hosts is also considered to reflect the age-dependent transmission rate and age-targeted drugtreatment rate. We consider various biological factors that may affect the evolutionary dynamics of host-parasite interactions. By assuming various trade-offs between parasite drug-resistance and the associated fitness cost and between snail resistance to the parasite and the associated cost in reproduction, we investigate the roles of drug-treatment rate, drug-resistance level, and parasite virulence on the evolutionary outcomes of the host-parasite system.;Many existing epidemiological models have assumed that disease stages have exponentially distributed durations. However, models that use the exponential distribution assumption (EDA) may generate biased and even misleading results in some cases. This discrepancy is particularly damaging if the models are employed to assist policy-makers in disease control and interventions. Particularly, health authorities must rely on quarantine, isolation and other non-pharmaceutical interventions to contain outbreaks of newly emerging human diseases. Models with the EDA are especially inappropriate for evaluating the effectiveness of these control strategies. This thesis includes studies of mathematical models that use more realistic assumptions on disease stage durations (with the exponential distribution as a special case). With biological parameters for SARS from the initial case series in Hong Kong and infection rates from hospitalizations in Singapore, we determined sensitivity of model results to control parameters, which allows us to compare the effectiveness of various control strategies.
机译:本文的重点是利用数学模型研究传染病的传播动力学。它包括两个主要主题。第一个涉及人类血吸虫蜗牛系统的进化动力学。第二个主题是评估直接传播感染(如流感和SARS)的疾病控制策略。这些模型试图回答生物学家和决策者对公共卫生感兴趣的特定生物学问题。人类-血吸虫之间相互作用的模型用于研究问题,包括对人类宿主进行药物治疗的影响以及人类宿主内寄生虫的耐药性以及寄生虫毒力对中间蜗牛宿主进化动力学的作用。使用直接传播疾病的模型来生成有用的信息,可以帮助决策者控制和干预疾病。;更具体地说,对于人类血吸虫-蜗牛系统,我们的模型包括两种蜗牛宿主类型和单个寄生虫菌株。人类宿主的年龄结构也被认为反映了年龄依赖性传播率和针对年龄的药物治疗率。我们考虑了可能影响宿主-寄生虫相互作用的进化动力学的各种生物学因素。通过假设在寄生虫抗药性和相关的适应性成本之间以及在对寄生虫的蜗牛抗性和相关的繁殖成本之间进行各种折衷,我们研究了药物治疗率,耐药性水平和寄生虫毒力对寄生虫的作用。宿主-寄生虫系统的进化结果。;许多现有的流行病学模型都假设疾病阶段的持续时间呈指数分布。但是,在某些情况下,使用指数分布假设(EDA)的模型可能会产生偏差甚至产生误导的结果。如果采用这些模型来协助决策者进行疾病控制和干预,这种差异将尤其具有破坏性。特别是,卫生当局必须依靠检疫,隔离和其他非药物干预措施来遏制新出现的人类疾病的爆发。带有EDA的模型尤其不适用于评估这些控制策略的有效性。本文包括对数学模型的研究,这些模型对疾病的病程持续时间使用了更现实的假设(指数分布为特例)。利用香港最初病例中SARS的生物学参数以及新加坡住院患者的感染率,我们确定了模型结果对控制参数的敏感性,这使我们能够比较各种控制策略的有效性。

著录项

  • 作者

    Yang, Yiding.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mathematics.;Applied Mathematics.;Biology Virology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号