首页> 外文学位 >First-principles investigations of electronic structures of pristine and doped anatase titanium dioxide.
【24h】

First-principles investigations of electronic structures of pristine and doped anatase titanium dioxide.

机译:原始和掺杂的锐钛矿型二氧化钛电子结构的第一性原理研究。

获取原文
获取原文并翻译 | 示例

摘要

The formation and development of quantum theory in the first half of the 20th century has led to a revolution in our understanding of pure and applied physics. Quantum theory has nowadays demonstrated a surprisingly accurate and predictive power in modern science and engineering. In this study, an important branch of quantum theory, density functional theory (DFT), is applied to studies of TiO2 and doped TiO2, which have shown considerable applications in industry.; The first chapter is an introduction to the theoretical background of DFT, in which a large quantity of efforts are focused on the analysis of exchange-correlation energy and how to approximate it by using local density approximation (LDA), generalized gradient approximation (GGA), and LDA+U, where the U is the Hubbard coefficient. This is followed in the second chapter by a discussion of practical implementations of the DFT-based calculations. We primarily introduce linearized augmented plane wave (LAPW) and augmented plane wave plus local orbital (APW+LO) methods, both of which are applied in our calculations. In chapter 3, we briefly introduce some fundamental properties of TiO2 and its applications in industry. Chapters 4 through 8 are divided into two categories.; Chapters 4 through 6 are mainly concerned with insights into the mechanism of optical excitation in anatase TiO2. Chapters 7 and 8 are concerned with TiO2-based dilute magnetic semiconductors (DMS).; Chapter 4 presents detailed calculations on pristine TiO2, including the structural optimization, density of states (DOS), band structure, and optical properties. Our calculations involve both bulk and slab TiO 2, presenting reasonable results without considering inherent drawbacks of the calculation methods involved. Calculations on slab TiO2 provide insight to account for the particular property of TiO2 in nanoscale particles where a significant fraction of atoms are on the surface. In chapter 5, we investigate effects of the non-metal dopants such as N, C, and S on the electronic structure of TiO2 host. They are all favorable dopants in making the original band gap of TiO2 small enough for visible light excitation, although the mechanisms behind them are diverse. In Chapter 6, metal dopants in the TiO2 host are extensively studied, including lanthanide elements such as Nd, Ce and Er, and transition metals such as Pt. Lanthanide 4f electrons and transition metal 5d electrons are intensively explored with LDA+U approach to account for their strong correlation. The findings are that the 4f or 5d states can function as donor or provide an intra-shell excitation, both of which are mechanisms for reducing the optical band gap.; In chapter 7, we calculate the electronic structure of an oxygen vacancy in anatase TiO2. There are important findings. The states of a single oxygen vacancy could act as a shallow donor. However, the states of some vacancy pair structures are partially spin-polarized. In chapter 8, electronic structure of Co and V dopants are explored within LDA and LDA+U. It is found that they are all spin-polarized and the coupling between Co or V with oxygen vacancy are a favorable factor in inducing room temperature ferromagnetism in TiO2 host. The origin of room temperature magnetism of TiO2-based DMS is explored by taking Cr-doped TiO2 as a special example. Cr 3d states are found to be situated within the band gap of the TiO2 host and completely spin-polarized to generate its magnetism. The interaction of Cr ion without a mediating oxygen vacancy is too small to account for the occurrence of room temperature ferromagnetism. However, the ferromagnetic interactions in a structure with an oxygen vacancy residing between two Cr ions are strong enough to stablilize the ferromagnetic phase above room temperature.
机译:量子理论在20世纪上半叶的形成和发展引发了我们对纯物理和应用物理学的理解的一场革命。如今,量子理论已证明在现代科学和工程中具有令人惊讶的准确和可预测的能力。在这项研究中,量子理论的一个重要分支,即密度泛函理论(DFT),被用于TiO2和掺杂TiO2的研究,在工业上已显示出相当大的应用。第一章介绍了DFT的理论背景,其中大量工作集中在交换相关能量的分析以及如何通过使用局部密度近似(LDA),广义梯度近似(GGA)进行近似。 ,以及LDA + U,其中U是Hubbard系数。在第二章之后,将讨论基于DFT的计算的实际实现。我们主要介绍线性化的增强平面波(LAPW)和增强平面波加局部轨道(APW + LO)方法,这两种方法都应用于我们的计算中。在第三章中,我们简要介绍了TiO2的一些基本特性及其在工业中的应用。第4章至第8章分为两类。第4章至第6章主要涉及锐钛矿型TiO2中光激发机理的见解。第7章和第8章涉及TiO2基稀磁半导体(DMS)。第4章介绍了原始TiO2的详细计算,包括结构优化,态密度(DOS),能带结构和光学性质。我们的计算涉及块状和平板状的TiO 2,给出了合理的结果,而没有考虑所涉及的计算方法的固有缺点。平板TiO2的计算可提供洞察力,以解释TiO2在纳米级粒子中的特殊性质,其中大部分原子在表面上。在第5章中,我们研究了N,C和S等非金属掺杂剂对TiO2主体电子结构的影响。尽管它们背后的机理各不相同,但它们都是使TiO2的原始带隙足够小以进行可见光激发的有益掺杂剂。在第6章中,对TiO2主体中的金属掺杂剂进行了广泛的研究,包括镧系元素(如Nd,Ce和Er)和过渡金属(如Pt)。用LDA + U方法深入研究了镧系元素4f电子和过渡金属5d电子,以说明它们的强相关性。这些发现是4f或5d状态可以充当供体或提供壳内激发,这两者都是减小光学带隙的机制。在第7章中,我们计算了锐钛矿型TiO2中氧空位的电子结构。有重要发现。单个氧空位的状态可以充当浅供体。但是,某些空位对结构的状态是部分自旋极化的。在第8章中,探讨了LDA和LDA + U中Co和V掺杂剂的电子结构。发现它们都是自旋极化的,并且Co或V与氧空位之间的偶联是诱导TiO 2主体中的室温铁磁性的有利因素。以Cr掺杂TiO2为例,探讨了TiO2基DMS室温磁化的起源。发现Cr 3d态位于TiO2主体的带隙内,并且完全自旋极化以产生其磁性。没有介导氧空位的Cr离子的相互作用太小,不足以说明室温下铁磁性的发生。但是,在两个Cr离子之间存在氧空位的结构中的铁磁相互作用足够强,可以稳定高于室温的铁磁相。

著录项

  • 作者

    Wang, Yushan.;

  • 作者单位

    University of Delaware.$bDepartment of Physics and Astronomy.;

  • 授予单位 University of Delaware.$bDepartment of Physics and Astronomy.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

  • 入库时间 2022-08-17 11:39:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号