首页> 外文学位 >Ecosystem respiration and foliar morphology of a primary tropical rain forest: The effects of canopy structure and environmental gradients.
【24h】

Ecosystem respiration and foliar morphology of a primary tropical rain forest: The effects of canopy structure and environmental gradients.

机译:主要热带雨林的生态系统呼吸作用和叶片形态:冠层结构和环境梯度的影响。

获取原文
获取原文并翻译 | 示例

摘要

Wood and foliage are major components of ecosystem respiration, but estimates of large-scale rates for tropical rain forests are uncertain because of poor sampling in the upper canopy and across landscapes. Carbon balance models often rely on leaf mass per area (LMA) because it correlates with many plant physiological parameters. Researchers have long assumed variation in LMA to be a response to light (sun/shade leaf dichotomy), but LMA also reflects increases in leaf density that result from decreasing water potential with height. We used a portable scaffolding tower to measure plant respiration, LMA, and light from ground level to the canopy top across 55 sites in a primary tropical rain forest in Costa Rica. The first objective of this study was to extrapolate woody CO2 efflux to the forest by characterizing its variation with canopy structure and landscape gradients. The second objective was to extrapolate foliar and total respiration to the forest by investigating the variation in foliar respiration with foliar parameters, canopy structure, and landscape gradients. The third objective was to determine whether LMA varied primarily because of light or water potential. Wood and foliage respiration rates increased with height and showed differences between plant functional groups. Wood respiration per unit ground area was 1.3 mumo1 CO2 M-2 s-1 and foliar respiration was 3.5 mumol CO2 m-2 s-1, representing 14% and 37% of total ecosystem respiration, respectively. Total ecosystem respiration (9.38 +/- 1.43 [mumol CO2 m-2 s-1 ) was 33% greater than eddy flux nighttime net ecosystem exchange for the same forest, suggesting that eddy flux studies reporting a large sink for tropical rain forests may be in error. We found LMA to be better related to height than light environment, supporting the hypothesis that the LMA gradient within forest canopies is primarily driven by a linear decrease in turgor pressure with height, caused by an increase in hydraulic resistance with gravity and longer path length. While light does affect LMA slightly, especially in the light-limited understory, the sun/shade leaf model taught in every plant physiology textbook is too simplistic to describe the large variation of LMA with vertical structure.
机译:木材和树叶是生态系统呼吸作用的主要组成部分,但由于上层冠层和整个景观的采样不充分,因此对热带雨林大规模捕捞速率的估计尚不确定。碳平衡模型通常依赖于每单位叶片质量(LMA),因为它与许多植物生理参数相关。长期以来,研究人员一直认为LMA的变化是对光的响应(日光/阴影叶片二分法),但LMA还反映了由于水势随高度降低而导致的叶片密度增加。我们使用便携式脚手架塔测量了哥斯达黎加主要热带雨林中55个站点的植物呼吸,LMA和从地面到树冠顶部的光线。这项研究的第一个目标是通过描述其冠层结构和景观梯度的变化,将木本二氧化碳的排放量外推到森林中。第二个目标是通过调查叶面参数,冠层结构和景观梯度的叶面呼吸变化来推断森林的叶面呼吸和总呼吸。第三个目标是确定LMA是否主要是由于光照或水势而变化。木材和树叶的呼吸速率随高度增加而增加,并显示出植物功能组之间的差异。每单位地面面积的木材呼吸量为1.3 mumo1 CO2 M-2 s-1,而叶子呼吸量为3.5 mumol CO2 m-2 s-1,分别占生态系统总呼吸量的14%和37%。对于同一森林,生态系统总呼吸(9.38 +/- 1.43 [mumol CO2 m-2 s-1])比涡流通量夜间净生态系统交换量高33%,这表明涡流通量研究报告说热带雨林汇聚量较大。错误。我们发现,LMA与高度之间的关系比与光环境之间的关系更好,支持以下假设:林冠层内的LMA梯度主要是由随着高度增加的水力阻力和更长的路径长度导致的土压随高度线性下降而驱动的。尽管光确实会稍微影响LMA,尤其是在光线受限的林下,但每本植物生理学教科书中讲授的日光/阴影叶片模型都过于简单,无法描述LMA具有垂直结构的巨大变化。

著录项

  • 作者

    Cavaleri, Molly A.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Biology Ecology.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生态学(生物生态学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号