首页> 外文学位 >GPS radio occultation and the role of atmospheric pressure on spaceborne gravity estimation over Antarctica.
【24h】

GPS radio occultation and the role of atmospheric pressure on spaceborne gravity estimation over Antarctica.

机译:GPS无线电掩星和大气压力在南极星载重力估计中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Dedicated satellite gravity missions are anticipated to significantly improve the current knowledge of the Earth's mean gravity field and its time variable part-climate sensitive gravity signals. They could be measured by the Gravity Recovery and Climate Experiment (GRACE) twin-satellite with sub-centimeter accuracy in terms of column of water movement near the Earth's surface with a spatial resolution of several hundred kilometers or larger, and a temporal resolution of one month or weeks.; To properly recover the time variable gravity signals from space, the gravity measurements require the atmospheric pressure contribution to be accurately modeled and removed. The sparse coverage of measurements makes the weather products less accurate in the southern hemisphere, especially over the Southern Ocean and Antarctica. The asynoptic observation from GPS radio occultation could achieve dense spatial coverage even in remote regions. In this research, we investigate the potential use of GPS occultation to improve the pressure modeling over Antarctica. Atmospheric pressure profiles are retrieved and validated against ECMWF, NCEP and radiosonde observations. Our results show that occultation can provide compatible observations especially in the upper atmosphere. Large standard deviations and biases are found near the ground and in the Antarctic region. GPS occultation in the polar regions is less affected by multipath problem and can penetrate down near the surface. Through an experiment using a 1-D variational (1DVar) approach, we show that the high vertical accuracy of GPS occultation can be propagated down to reduce the uncertainty of surface pressure, indicating that GPS occultation can be expected to have positive impact on the pressure modeling over data-sparse areas after obtaining adequate number of observations (e.g., from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC)). We also find that the retrieved profiles could be different due to various assumptions and retrieval algorithms.; Pressure uncertainty degrades the GRACE recovered gravity change. We study the uncertainty of pressure modeling on various temporal scales. Global analysis models show large differences in the Antarctic region. The surface topography may introduce additional biases if it is not well treated. The atmospheric tides are non-negligible and need to be properly considered. The real magnitude of the mis-modeled and un-modeled errors in the analysis is hard to evaluate, especially in Antarctica. We simulate the errors sensitive to GRACE using the differences between two global analysis models. Most of the very long wavelength errors are well captured by GRACE. Their changes in the form of short-period variation increase the errors of the middle to high degree spherical harmonic coefficients. After de-aliasing, middle to high degree coefficients are noticeably improved. The Inverted Barometer (IB) assumption decreases the amplitude of the aliasing error, and the pattern of the RMS difference is slightly changed over land by neglecting the large variations in the Southern Ocean. Our result using more recent ECMWF and NCEP operational analyses shows reduced aliasing effects, which indicates that two models are becoming increasingly close to each other. The model correlation and IB assumption may underestimate the true aliasing error. (Abstract shortened by UMI.)
机译:预计将进行专门的卫星重力任务,以大大改善当前对地球平均重力场及其时变部分气候敏感重力信号的了解。它们可以通过重力恢复和气候实验(GRACE)双卫星进行测量,其亚厘米级精度以接近地球表面的水运动列为基础,其空间分辨率为几百公里或更大,而时间分辨率为一一个月或几周。为了正确地从空间恢复时变重力信号,重力测量需要对大气压力贡献进行精确建模和消除。稀疏的测量范围使南半球(尤其是南大洋和南极洲)的天气产品准确性降低。即使在偏远地区,从GPS无线电掩星的渐近观测也可以实现密集的空间覆盖。在这项研究中,我们调查了GPS掩埋技术在改善南极洲压力模型方面的潜在用途。检索大气压分布图,并根据ECMWF,NCEP和探空仪观测结果进行验证。我们的结果表明,掩星可以提供兼容的观测结果,尤其是在高层大气中。在地面附近和南极地区发现较大的标准偏差和偏差。极地地区的GPS掩盖受多径问题的影响较小,并且可以向下渗透到地表附近。通过使用一维变分(1DVar)方法进行的实验,我们表明GPS掩星的高垂直精度可以向下传播,以减少表面压力的不确定性,这表明GPS掩星可望对压力产生积极影响在获得足够数量的观测值之后,对数据稀疏区域进行建模(例如,从气象,电离层和气候星座观测系统(COSMIC)获得)。我们还发现,由于各种假设和检索算法,检索到的配置文件可能有所不同。压力不确定性会降低GRACE恢复的重力变化。我们研究了各种时间尺度上压力模型的不确定性。全局分析模型显示,南极地区存在很大差异。如果处理不当,表面形貌可能会引入其他偏差。大气潮是不可忽略的,需要适当考虑。分析中错误建模和未建模错误的真实严重程度难以评估,尤其是在南极洲。我们使用两个全局分析模型之间的差异来模拟对GRACE敏感的错误。 GRACE可以很好地捕获大多数非常长的波长误差。它们以短周期变化形式的变化增加了中度到高阶球谐系数的误差。消除混叠后,中高阶系数显着提高。反向气压计(IB)假设减小了混叠误差的幅度,并且通过忽略南大洋的巨大变化,RMS差异的模式在陆地上略有变化。我们使用较新的ECMWF和NCEP运营分析得出的结果显示出减少的混叠效应,这表明两个模型之间的距离越来越近。模型相关性和IB假设可能会低估真实的混叠误差。 (摘要由UMI缩短。)

著录项

  • 作者

    Ge, Shengjie.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Geodesy.; Geophysics.; Remote Sensing.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 236 p.
  • 总页数 236
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大地测量学;地球物理学;遥感技术;
  • 关键词

  • 入库时间 2022-08-17 11:39:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号