首页> 外文学位 >Improving the bit-rate, noise performance and power dissipation of on-chip buses.
【24h】

Improving the bit-rate, noise performance and power dissipation of on-chip buses.

机译:改善片上总线的比特率,噪声性能和功耗。

获取原文
获取原文并翻译 | 示例

摘要

Today's System-On-Chip (SOC) devices are targeting complex applications, where there is a need for significant amount of computing power and data transfer. This implies that the number of on-chip modules will increase, and so will the number of on chip buses connecting these modules. With the continuous scaling of technology, increased die area and faster clock speeds, the delay and power dissipation of on-chip buses are becoming one of the main bottlenecks in current high-performance SoC design.; The delay, noise and energy dissipation of long on-chip buses are a strong function of the coupling capacitance between the wires. As the technology is scaled, the lateral component of interconnect capacitance significantly grows to dominate the total interconnect capacitance due to reduction in wire pitch and the increase in the interconnects' aspect ratio.; The focus of this dissertation is to develop circuit techniques to reduce the effective coupling capacitance between coupled interconnects in order to reduce the power dissipation, induced noise, and delay of on-chip buses. A low power coupling-based encoding scheme is proposed to minimize the power consumption of on-chip buses by reducing the relative switching activity between adjacent bus lines. A new positioning scheme for interleaved repeaters on bidirectional buses is also introduced to provide better propagation delay and noise performance than the commonly used midway positioning scheme. Another proposed low-power bus scheme, DDL, introduces dynamic relative delays only between oppositely switching adjacent lines to reduce the capacitive coupling component of delay and energy dissipation. A Source-Synchronous Multi-Cycle Bus (SSMCB) is also proposed which is scalable, appropriate for communication between different clock domains, low-power and improves the tolerance to process variations. Furthermore, the concept of implementing serial-links on-chip was proposed to fully utilize the interconnect bandwidth. This efficiently uses scarce interconnect resources such as in the many-core platform and the for "Thru-Silicon Vias " in 3D die stacks. Another proposed technique is the active shielding technique, which replaces the passive shields in the conventional shielding scheme with active shields to further reduce the bus power dissipation. Many industrial and experimental results are also presented throughout the dissertation in support of the presented theory.
机译:当今的片上系统(SOC)设备针对的是复杂的应用程序,在这些应用程序中需要大量的计算能力和数据传输。这意味着片上模块的数量将增加,连接这些模块的片上总线的数量也将增加。随着技术的不断扩展,管芯面积的增加和时钟速度的加快,片上总线的延迟和功耗正成为当前高性能SoC设计的主要瓶颈之一。较长的片上总线的延迟,噪声和能量耗散是导线之间耦合电容的重要函数。随着技术的扩展,由于导线间距的减小和互连件纵横比的增加,互连件电容的横向分量显着增加,从而占总互连件电容的支配地位。本文的重点是开发电路技术以减小耦合互连之间的有效耦合电容,以减少功耗,感应噪声和片上总线的延迟。提出了一种基于低功率耦合的编码方案,以通过减少相邻总线之间的相对开关活动来最小化片上总线的功耗。还引入了一种双向总线上交错中继器的新定位方案,以提供比常用的中途定位方案更好的传播延迟和噪声性能。另一种建议的低功耗总线方案DDL仅在反向切换的相邻线路之间引入动态相对延迟,以减少延迟和能量耗散的电容耦合分量。还提出了一种源同步多循环总线(SSMCB),它具有可扩展性,适用于不同时钟域之间的通信,低功耗并提高了对过程变化的容忍度。此外,提出了在芯片上实现串行链接的概念,以充分利用互连带宽。这样可以有效地利用稀缺的互连资源,例如在多核平台和3D芯片堆叠中的“ Thru-Silicon Vias”中。提出的另一种技术是有源屏蔽技术,该有源屏蔽技术用有源屏蔽代替了传统屏蔽方案中的无源屏蔽,以进一步降低总线功耗。在整个论文中还提出了许多工业和实验结果,以支持所提出的理论。

著录项

  • 作者

    Ghoneima, Maged M.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 325 p.
  • 总页数 325
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号