首页> 外文学位 >Directed self-assembly of silica nanoparticles: two-dimensional patterns and three-dimensional structures with applications to nanofluidics.
【24h】

Directed self-assembly of silica nanoparticles: two-dimensional patterns and three-dimensional structures with applications to nanofluidics.

机译:二氧化硅纳米粒子的定向自组装:二维图案和三维结构及其在纳米流体中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The fabrication of patterned arrays of nanoparticles is an essential step towards the creation of novel nanoscale materials and devices. These micro/nanoscale colloidal arrays may find application in photonics, biochemical sensors and micro-/nano-fluidics. Most previous work has focused on template-directed self-assembly of micro- and nanoparticles (>100-nm) into micrometer or larger periodic patterns. Achieving 1D/2D patterned arrays and 3D structures with 10- to 100-nm diameter nanoparticles in controlled morphologies remains an important nanofabrication challenge.; Both hard-template (e.g., SiO2) and soft-template (photoresist) directed self-assembly of silica nanoparticles into 1D and 2D nanoscale patterns using a combination of interferometric lithography (IL) and spin coating were reported here. Single linear silica particle chain patterns and isolated 2D particle patterns were easily formed on patterned surfaces while silica particle rows, interconnected networks, and isolated posts with controllable thickness were formed on flat surfaces.; An improved approach for fabricating lithographically-defined mesoscopic colloidal nanoparticle patterns over large areas by spin coating a uniform layer of nanoparticles and then patterning using IL and reactive-ion etching is introduced. Both 1D and 2D patterns are produced with sub-micrometer periodicity, high quality, and excellent uniformity over large areas.; An approach to the fabrication of enclosed nanoscale 3D structures composed of silica nanoparticles using IL, spin-coating, and high-temperature calcinations was developed. Enclosed nanoscale 3D structures include channels, isolated cavities, continuous networks and multiple-layer structures. The formation processing and stability of the resultant structures were investigated in detail with Thermogravimetric analysis, high resolution scanning electron microscope and conventional stability test. The resultant 3D structures has the heterogeneous spatial scales of 100-nm channels with ∼10nm porosity controllable by combination of lithography and particle sizes. This process opens a new route to fabricating 3D enclosed nanostructures with complex porosities for potential uses in photonics, molecular/biological sensors, biological separation and catalysis.; Finally, a new nanofluidic phenomenon of oscillatory drying/filling was observed in these porous silica nanoparticle channels. Evaporation-induced transport of fluids was proposed to explain this phenomenon.
机译:纳米颗粒的图案化阵列的制造是创建新型纳米级材料和装置的重要步骤。这些微米/纳米级胶体阵列可用于光子学,生化传感器和微米/纳米流体中。先前的大多数工作都集中在将微米和纳米颗粒(> 100 nm)定向为模板的自组装成微米或更大的周期性图案。以受控的形态获得直径为10至100 nm的纳米粒子的1D / 2D图案化阵列和3D结构仍然是重要的纳米制造挑战。此处报道了结合干涉平版印刷术(IL)和旋涂法将二氧化硅纳米粒子硬模板(例如SiO2)和软模板(光致抗蚀剂)定向自组装成1D和2D纳米级图案的方法。单个线性二氧化硅颗粒链图案和孤立的2D颗粒图案很容易在图案化的表面上形成,而二氧化硅颗粒行,互连的网络和厚度可控制的孤立柱则形成在平坦的表面上。引入了一种改进的方法,该方法可通过旋涂均匀的纳米颗粒层,然后使用IL和反应离子蚀刻进行构图,从而在大面积上制造光刻定义的介观胶体纳米颗粒图案。 1D和2D图案均具有亚微米的周期性,高质量且在大面积上具有出色的均匀性。开发了一种使用IL,旋涂和高温煅烧制造由二氧化硅纳米颗粒组成的封闭纳米级3D结构的方法。封闭的纳米级3D结构包括通道,隔离的空腔,连续的网络和多层结构。通过热重分析,高分辨率扫描电子显微镜和常规稳定性试验详细研究了所得结构的形成过程和稳定性。最终的3D结构具有100nm通道的异质空间尺度,孔隙率约为10nm,可通过光刻和粒度组合来控制。该工艺为制造具有复杂孔隙的3D封闭纳米结构开辟了一条新途径,可用于光子学,分子/生物传感器,生物分离和催化。最后,在这些多孔二氧化硅纳米颗粒通道中观察到振荡干燥/填充的新的纳米流体现象。提出了蒸发诱导的流体传输来解释这种现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号