首页> 外文学位 >Controlling activation energy to wafers and walls in plasma processing reactors for microelectronics fabrication.
【24h】

Controlling activation energy to wafers and walls in plasma processing reactors for microelectronics fabrication.

机译:控制用于微电子制造的等离子处理反应器中晶片和壁的活化能。

获取原文
获取原文并翻译 | 示例

摘要

The trend to shrink modern microelectronic devices is pushing processing technologies to unprecedented limits. In particular, plasma processing should meet the stringent requirements of developing features at future technological nodes. Microprocessors now available have oxide layers in gate stacks which are only a few mono-layers (1-2 nm) thick. Therefore at future technology nodes even a monolayer deviation can have significant implications on performance. In this work, relevance of low pressure, high plasma density discharges for advanced semiconductor processing in the fabrication of fine features in microelectronics are discussed.To meet the stringent requirements, plasma processing requires unprecedented control of the properties of reactive species onto the wafer (small scale) and walls of reactors (large scale). Ultimately, extreme control over the uniformity, composition, and energy of reactants is required as these are the enablers to processing delivering the requisite activation energy to various processing steps such as etching, deposition, etc. Different methods of controlling activation energy are investigated to achieve the fine balance between the uniformity, composition and energy of the reactants.Pulsed plasma ion implantation, a technique to form ultra-shallow junctions, is an important technology to enable advances in microelectronics industry. The characteristics of the ion energy and angular distributions (IEADs) incident onto the wafer are critical to determination of the junction properties. In particular, angular asymmetry in the IEADs was observed as a result of the curvature in the sheath edge. By changing the source design, the sheath symmetry was restored thereby making the IEADs angularly symmetric. Characterizing the IEADs enables improvement in the uniformity, repeatability and reliability of the implantation process.Extreme control in etching process technologies is critical to etch node feature geometries with high aspect ratios. Typical reactive ions based etching techniques is prone to issues such as microloading and mask charging thus limiting the precise control that can be achieved. Plasma atomic layer etching is therefore suggested to allow for precise atomic scale controllability. Precise control over IEADs incident onto the wafer enables extreme control in etching characteristics of the process. However, to keep integration costs low, it is important to utilize conventional plasma equipment while enabling such control. Recipes utilizing PALE processes have been investigated in conventional plasma sources for different gas mixtures to etch feature geometries of interest at future technological nodes. We found that, while feasible, PALE processes are slow compared to conventional etching. Recipes based on non-sinusoidal bias waveforms were investigated which, though increase the throughput, are still slow.Wafer-to-wafer reproducibility during plasma etching presents another challenge. The use of low-pressure, high-density discharges results in increasing buildup of etch products in the plasma reactor resulting in increased interactions of etch products with wafer and non-wafer surfaces, alike. Consequences of such interactions have been investigated for Ar/Cl2 inductively-coupled plasma etching of poly-Si. The interactions of etch products with the wafer ultimately results in decrease in etch rates while the chamber seasons due to interactions with the non-wafer surfaces. A proportional controller using bias voltage as an actuator and etch rate as the sensor was implemented to achieve real-time, closed-loop control of etch rate to counter the effects of seasoning.
机译:缩小现代微电子设备的趋势正在将处理技术推向前所未有的极限。特别是,等离子处理应满足未来技术节点开发功能的严格要求。现在可用的微处理器在栅极堆叠中的氧化层只有几层单层(1-2 nm)厚。因此,在未来的技术节点上,即使单层偏差也会对性能产生重大影响。在这项工作中,讨论了低压,高等离子密度放电与微电子精细特征制造中先进半导体处理的相关性。为了满足严格的要求,等离子处理需要对晶圆上反应性物种的性质进行前所未有的控制(小比例)和反应堆壁(大规模)。最终,需要对反应物的均匀性,组成和能量进行极端控制,因为它们是处理的必要条件,将必需的活化能传递到各种处理步骤,例如蚀刻,沉积等。研究了各种控制活化能的方法来实现脉冲等离子体离子注入是一种形成超浅结的技术,是推动微电子工业发展的重要技术。入射到晶片上的离子能量和角度分布(IEAD)的特性对于确定结性质至关重要。尤其是,由于外壳边缘的弯曲,在IEAD中观察到角度不对称。通过更改源设计,可以恢复护套的对称性,从而使IEAD具有角度对称性。 IEAD的特性可以改善注入工艺的均匀性,可重复性和可靠性。蚀刻工艺技术的极端控制对于蚀刻具有高深宽比的节点特征几何至关重要。典型的基于反应离子的蚀刻技术容易出现诸如微负载和掩模充电的问题,因此限制了可以实现的精确控制。因此建议等离子原子层蚀刻以实现精确的原子尺度可控性。对入射到晶片上的IEAD的精确控制可以对工艺的蚀刻特性进行极端控制。然而,为了保持较低的集成成本,重要的是在实现这种控制的同时利用常规的等离子体设备。已经在常规等离子体源中针对不同的气体混合物研究了利用PALE工艺的配方,以在未来的技术节点上蚀刻出感兴趣的特征几何形状。我们发现,尽管可行,但PALE工艺比常规蚀刻慢。研究了基于非正弦偏置波形的配方,这些配方虽然增加了产量,但仍然很慢。等离子蚀刻过程中晶圆间的可再现性提出了另一个挑战。低压,高密度放电的使用导致等离子体反应器中蚀刻产物的积聚增加,导致蚀刻产物与晶片和非晶片表面的相互作用增加。对于多晶硅的Ar / Cl2电感耦合等离子体刻蚀,已经研究了这种相互作用的后果。蚀刻产物与晶片的相互作用最终导致蚀刻速率降低,而由于与非晶片表面的相互作用而使腔室变季节。比例控制器使用偏置电压作为致动器,采用蚀刻速率作为传感器,以实现蚀刻速率的实时,闭环控制以抵消调味的影响。

著录项

  • 作者

    Agarwal, Ankur.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Chemical.Physics Fluid and Plasma.Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 241 p.
  • 总页数 241
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号