首页> 外文学位 >A sharp interface fluid-structure interaction model for bioprosthetic heart valve dynamics.
【24h】

A sharp interface fluid-structure interaction model for bioprosthetic heart valve dynamics.

机译:用于生物人工心脏瓣膜动力学的清晰的界面流固耦合模型。

获取原文
获取原文并翻译 | 示例

摘要

To improve the understanding of bioprosthetic heart valve failure, it is necessary to develop an advanced computer model that incorporates the dynamics of the valve leaflet and surrounding blood under physiologic conditions. Valve leaflets are complex geometries and undergo rapid deformation. Their motion affects---and is affected by---the surrounding blood. This two-way coupling necessitates a robust algorithm in order to overcome numerical stiffness, convergence challenges, and stability issues.;A locally refined Cartesian mesh, sharp interface method has been developed for the solution of flows interacting with moving bodies. In the structural domain, the valve leaflet is represented in a Lagrangian fashion and moves based on its experimentally determined material properties. In computing leaflet motion, the anisotropic, nonlinear material properties of the valve leaflet are incorporated using a finite element solver, which calculates the leaflet deformation and stresses based on the stress in the surrounding fluid.;A fluid-structure interaction algorithm has been developed which enables full two-way coupling in a stable fashion. A strongly-coupled, partitioned approach is used in which subiterations of the fluid and structure solutions are performed at each time step. During the subiterations, the leaflet motion is used as a boundary condition on the fluid, and the fluid stresses act as a boundary condition on the leaflet. In this way, continuity is ensured and two-way coupling is achieved. The simulation has been validated with several benchmark results.;Previous FSI approaches for valve simulations have faced significant challenges and have in most cases been limited to non-physiologic conditions with coarse meshes. The current approach has overcome these challenges, so that a full FSI solution is achieved using physiologic Reynolds numbers, realistic material properties, highly resolved grids, and a dynamic simulation. By fully coupling the motion of the valve with that of the surrounding blood, a solution is available that can more accurately predict leaflet deformation and stresses throughout the cardiac cycle. The simulation can be potentially employed in the understanding of the complex dynamics of the native and prosthetic heart valves and the effect of mechanical stresses on valve failure.
机译:为了增进对生物人工心脏瓣膜衰竭的了解,有必要开发一种先进的计算机模型,该模型应结合生理条件下瓣膜小叶和周围血液的动力学。瓣膜小叶是复杂的几何形状并且会快速变形。它们的运动会影响周围的血液,并受其影响。这种双向耦合需要一种鲁棒的算法来克服数值刚度,收敛性挑战和稳定性问题。在结构域中,瓣叶以拉格朗日方式表示,并根据其实验确定的材料特性进行移动。在计算小叶运动时,使用有限元求解器结合了瓣叶的各向异性,非线性材料特性,该求解器根据周围流体中的应力来计算小叶的变形和应力。能够以稳定的方式进行完整的双向耦合。使用一种强耦合的分区方法,其中在每个时间步骤执行流体和结构解决方案的子迭代。在子迭代过程中,小叶运动用作流体的边界条件,而流体应力则充当小叶的边界条件。这样,确保了连续性并实现了双向耦合。该模拟已通过多个基准测试结果进行了验证。以前的阀门模拟FSI方法面临重大挑战,并且在大多数情况下,仅限于使用粗网格的非生理条件。当前的方法克服了这些挑战,因此可以使用生理雷诺数,真实的材料特性,高度解析的网格和动态模拟来获得完整的FSI解决方案。通过将瓣膜的运动与周围血液的运动完全耦合,可获得一种可以更准确地预测整个心动周期中的小叶变形和应力的解决方案。该模拟可潜在地用于了解天然和人工心脏瓣膜的复杂动力学以及机械应力对瓣膜故障的影响。

著录项

  • 作者

    Vigmostad, Sarah Celeste.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号