首页> 外文学位 >Novel transport properties of electron-doped superconductors praseodymium-cerium-copper oxide.
【24h】

Novel transport properties of electron-doped superconductors praseodymium-cerium-copper oxide.

机译:电子掺杂的超导体-铈-铜氧化物的新型传输性质。

获取原文
获取原文并翻译 | 示例

摘要

The main focus of this thesis is the study of transport properties [thermomagnetic (Nernst) and thermoelectric (Seebeck) effects, Hall effect and magentoresistance in high magnetic field up to 58 T] of the electron-doped cuprate superconductor system Pr2-- xCxCuO4--delta. One chapter of this thesis is devoted to a study of the vortex Nernst effect in Pr doped YBa2Cu3O7-delta films.;Electron-doped cuprate superconductors have demonstrated many distinct properties from their hole-doped counterparts. A few of them are investigated in this thesis. For example, by taking advantage of the low upper critical field, we investigated the field driven normal state thermoelectric power at low temperature in Pr2--xC xCuO4--delta films with various doping. We observed an abrupt change of low temperature thermopower at a critical doping x=0.16. The kink behavior in the doping dependent thermopower and the previously reported normal state Hall coefficient can be correlated via a simple model, strongly suggesting a Fermi surface rearrangement at the critical doping. This is taken as a further evidence for a quantum phase transition in the electron-doped cuprate superconductors.;Prior vortex Nernst effect measurements have shown a weak superconducting fluctuation effect in electron-doped cuprates, suggesting a more conventional superconductivity. We measured Nernst effect carefully through the entire range of doping and temperature. A stronger superconducting fluctuation effect is observed in the underdoped region compared to the overdoped region. This behavior is similar but weaker than in hole-doped cuprates. We explain this as a result of the incoherent phase fluctuations.;The large normal state Nernst effect observed around optimal doping in electron-doped cuprates has been interpreted as a result of two-carrier transport. Our thorough Nernst effect measurements have revealed a fairly large Nernst signal at the doping extremes (slightly underdoped and highly overdoped) in the normal state, implying that the band structure at these dopings is not a simple one carrier Fermi pocket as suggested by the photoemission experiments.;Hall effect and magnetoresistance measurements in pulsed magnetic field (58 T) were performed on Pr2--xC xCuO4--delta films. A strong non-linear field dependent Hall resistivity is observed for doping x above optimal doping in a certain temperature range, while the linearity persists up to 58 T in the underdoped region at all measured temperatures. Concomitant with the crossover of field dependent magnetoresistance in the overdoped regime, a spin density wave model is adapted to qualitatively explain the high field Hall effect. These results also imply that a quantum phase transition occurs under the superconductivity dome in electron-doped cuprates.;We also systematically measured the resistive superconducting transition in the electron-doped cuprates Pr2--xC xCuO4--delta down to 1.5 K for magnetic field up to 58 T applied parallel to the conducting ab-planes. We found that the zero temperature parallel critical field (Hc 2||ab(0)) exceeds 58 T for the underdoped and optimally-doped films. For the overdoped films, 58 T is sufficient to suppress the superconductivity. We also find that the Zeeman energy mu BHc2|| ab(0) reaches the superconducting gap (▵0), i.e., muBHc 2||ab(0)≃▵0, for all the dopings, strongly suggesting that the parallel critical field is determined by the Pauli paramagnetic limit in electron-doped cuprates.;Measurements of Nernst effect, resistivity and Hall angle on epitaxial films of Y1--xPr xBa2Cu3O7-delta (Pr-YBCO, 0 ≤ x ≤ 0.4) were performed over a broad range of temperature and magnetic field. While the Hall and resistivity data suggest a broad pseudogap regime in accordance with earlier results, these first measurements of the Nernst effect on Pr-YBCO show a large signal above the superconducting transition temperature Tc. This effect is attributed to vortex-like excitations in the phase incoherent condensate existing above T c. A correlation between disorder and the width of the phase fluctuation regime has been established for the YBCO family of cuprates, which suggests a Tc≃110 K for disorder-free YBa 2Cu3O7--delta.
机译:本论文的主要重点是研究掺杂电子的铜酸盐超导体系统Pr2-- xCxCuO4-的输运性质[热磁(能斯特)和热电(塞贝克)效应,霍尔效应和在高磁场中的磁阻]。 -三角洲。本论文的一章致力于研究掺Pr的YBa2Cu3O7-δ薄膜中的涡旋能斯特效应。电子掺杂的铜酸盐超导体表现出许多不同于空穴掺杂的对应性能。本文对其中一些进行了研究。例如,通过利用较低的上临界场,我们研究了具有不同掺杂的Pr2-xCxCuO4-δ薄膜在低温下的场驱动常态热电功率。我们观察到临界热掺杂量x = 0.16时,低温热功率突然变化。可以通过一个简单的模型将掺杂依赖的热功率中的扭结行为与先前报道的正常状态霍尔系数关联起来,这强烈表明了临界掺杂时费米表面的重排。这为电子掺杂的铜酸盐超导体中的量子相变提供了进一步的证据。先前的涡旋能斯特效应测量表明,电子掺杂的铜酸盐中超导的波动效应较弱,这表明它具有更常规的超导性。我们在整个掺杂和温度范围内仔细测量了能斯特效应。与掺杂区相比,在掺杂区观察到了更强的超导波动效应。这种行为是相似的,但比掺杂孔的铜酸盐弱。我们解释这是由于相干相位波动的缘故。在电子掺杂铜酸盐的最佳掺杂周围观察到的大的正常Nernst效应已被解释为双载流子传输的结果。我们透彻的能斯特效应测量结果表明,在正常状态下,在极端掺杂(轻度低掺杂和高度重掺杂)时,存在一个相当大的能斯特信号,这暗示着这些掺杂处的能带结构不是光发射实验所建议的简单的一个载流子费米口袋在脉冲磁场(58 T)中,对Pr2-xCxCuO4-δ薄膜进行霍尔效应和磁阻测量。在一定温度范围内,对于高于最佳掺杂的x掺杂,观察到了强的非线性场相关霍尔电阻,而在所有测量温度下,线性都在欠掺杂区中持续高达58T。伴随着在过量掺杂状态下场相关磁阻的交叉,自旋密度波模型适用于定性地解释高场霍尔效应。这些结果还暗示在电子掺杂的铜酸盐中超导圆顶下发生了量子相变。;我们还系统地测量了电子掺杂的铜酸盐Pr2--xC xCuO4--中的电阻超导跃迁,磁场低至1.5 K平行于导电ab平面施加的最大电流为58T。我们发现零掺杂和最佳掺杂薄膜的零温度平行临界场(Hc 2 || ab(0))超过58T。对于过量掺杂的膜,58 T足以抑制超导性。我们还发现塞曼能量μBHc2 || ab(0)到达超导间隙(uu0),即muBHc 2 || ab(0)sime; 0对于所有掺杂,强烈暗示平行临界场由Pauli顺磁极限决定电子掺杂的铜酸盐;在较宽的温度和磁场范围内,对Y1-xPrxBa2Cu3O7-δ(Pr-YBCO,0≤x≤0.4)的外延膜上的能斯特效应,电阻率和霍尔角进行了测量。尽管霍尔和电阻率数据根据较早的结果提出了较宽的拟隙机制,但这些对能斯特对Pr-YBCO的首次测量显示,在超导转变温度Tc之上有一个大信号。该效应归因于存在于T c以上的相态非相干冷凝物中的涡旋状激发。已为YBCO铜酸盐家族建立了无序度和相位波动范围宽度之间的相关性,这表明无序YBa2Cu3O7-δ的Tc≃ 110 K.

著录项

  • 作者

    Li, Pengcheng.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号