首页> 外文学位 >Energy efficient data representation and aggregation with event region detection in wireless sensor networks.
【24h】

Energy efficient data representation and aggregation with event region detection in wireless sensor networks.

机译:无线传感器网络中具有事件区域检测功能的节能数据表示和聚合。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we exploit the spatio-temporal nature of sensor data to approximate the current values of the sensors based on readings obtained from neighboring sensors and itself.;We propose a Tree based polynomial REGression algorithm, (TREG) that addresses the problem of data compression in wireless sensor networks. Instead of aggregated data, a polynomial function (P) is computed by the regression function, TREG. The coefficients of P are then passed to achieve the following goals: (i) The sink can get attribute values in the regions devoid of sensor nodes, and (ii) Readings over any portion of the region can be obtained at one time by querying the root of the tree. As the size of the data packet from each tree node to its parent remains constant, the proposed scheme scales very well with growing network density or increased coverage area.;Since physical attributes exhibit a gradual change over time, we propose an iterative scheme, UPDATE_COEFF, which obviates the need to perform the regression function repeatedly and uses approximations based on previous readings. Extensive simulations are performed on real world data to demonstrate the effectiveness of our proposed aggregation algorithm, TREG. Results reveal that for a network density of 0.0025 nodes/m2, a complete binary tree of depth 4 could provide the absolute error to be less than 6%. A data compression ratio of about 0.02 is achieved using our proposed algorithm, which is almost independent of the tree depth. In addition, our proposed updating scheme makes the aggregation process faster while maintaining the desired error bounds.;After the aggregation process is over, the root having the two polynomials, P and FP can be queried for FP (approximating the new event region) instead of flooding the whole network. For multiple such events, instead of computing a polynomial corresponding to each new event, areas with same data range are combined by the corresponding tree nodes and the aggregated coefficients are passed on. Results reveal that a new event can be detected by PERD while error in detection remains constant and is less than a threshold of 10%. As the node density increases, accuracy and delay for event detection are found to remain almost constant, making PERD highly scalable.;Whenever an event occurs in a WSN, data is generated by closeby sensors and relaying the data to the base station (BS) make sensors closer to the BS run out of energy at a much faster rate than sensors in other parts of the network. This gives rise to an unequal distribution of residual energy in the network and makes those sensors with lower remaining energy level die at much faster rate than others. We propose a scheme for enhancing network Lifetime using mobile cluster heads (CH) in a WSN. To maintain remaining energy more evenly, some energy-rich nodes are designated as CHs which move in a controlled manner towards sensors rich in energy and data. This eliminates multihop transmission required by the static sensors and thus increases the overall lifetime of the WSN. We combine the idea of clustering and mobile CH to first form clusters of static sensor nodes.;We propose a scheme for fitting the sub channel frequencies and corresponding ITs to a regression model for calculating the IT of a random sub channel for further analysis of the channel interference at the base station. Our scheme, based on the readings reported by Sensors helps in Dynamic Channel Selection (S-DCS) in extended C-band for assignment to unlicensed secondary users. S-DCS proves to be economic from energy consumption point of view and it also achieves accuracy with error bound within 6.8%. Again, users are assigned empty sub channels without actually probing them, incurring minimum delay in the process. The overall channel throughput is maximized along with fairness to individual users. (Abstract shortened by UMI.)
机译:在本文中,我们利用传感器数据的时空特性,基于从相邻传感器及其自身获得的读数来近似传感器的当前值。我们提出了一种基于树的多项式重构算法(TREG),该算法可解决以下问题:无线传感器网络中的数据压缩。由回归函数TREG计算多项式函数(P),而不是汇总数据。然后传递P的系数以实现以下目标:(i)接收器可以在没有传感器节点的区域中获得属性值,并且(ii)可以通过查询以下信息一次获得该区域任何部分的读数。树的根。由于从每个树节点到其父节点的数据包的大小保持恒定,因此,随着网络密度的增加或覆盖范围的增加,该方案的伸缩性非常好。由于物理属性随时间逐渐变化,因此我们提出了一种迭代方案UPDATE_COEFF ,从而避免了重复执行回归函数的需要,并基于以前的读数使用了近似值。对现实世界的数据进行了广泛的仿真,以证明我们提出的聚合算法TREG的有效性。结果表明,对于0.0025个节点/ m2的网络密度,深度为4的完整二叉树可以提供的绝对误差小于6%。使用我们提出的算法可以达到大约0.02的数据压缩率,这几乎与树的深度无关。此外,我们提出的更新方案使聚合过程更快,同时保持所需的错误范围。;聚合过程结束后,可以向具有两个多项式P和FP的根查询FP(近似新事件区域)泛滥整个网络。对于多个此类事件,不是通过计算对应于每个新事件的多项式,而是将具有相同数据范围的区域通过相应的树节点进行组合,并传递聚合系数。结果表明,PERD可以检测到一个新事件,而检测错误保持恒定并且小于10%的阈值。随着节点密度的增加,发现事件检测的准确性和延迟几乎保持不变,从而使PERD具有高度可扩展性;每当WSN中发生事件时,附近的传感器都会生成数据并将其中继到基站(BS)比起网络其他部分的传感器,使接近BS的传感器用尽的能量更快。这导致网络中剩余能量的分配不均,并使剩余能量水平较低的那些传感器以比其他传感器快得多的速率死亡。我们提出了一种在WSN中使用移动群集头(CH)来增强网络生存时间的方案。为了更均匀地保持剩余能量,一些能量丰富的节点被指定为CH,它们以受控方式移向能量和数据丰富的传感器。这消除了静态传感器所需的多跳传输,从而延长了WSN的整体寿命。我们将聚类和移动CH的思想结合到静态传感器节点的第一形式聚类中;我们提出了一种将子信道频率和相应IT拟合到回归模型的方案,以计算随机子信道的IT,以进一步分析基站的信道干扰。我们的方案基于Sensors报告的读数,有助于扩展C波段中的动态信道选择(S-DCS),以分配给未授权的二级用户。从能耗的角度来看,S-DCS被证明是经济的,并且还可以实现精度在6.8%以内的误差。同样,为用户分配了空子通道,而没有实际对其进行探测,从而使过程延迟最小。总体信道吞吐量最大化,并且对各个用户公平。 (摘要由UMI缩短。)

著录项

  • 作者

    Banerjee, Torsha.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号