首页> 外文学位 >Physics and Design of SOI FED Based Memory Cells.
【24h】

Physics and Design of SOI FED Based Memory Cells.

机译:基于SOI FED的存储单元的物理和设计。

获取原文
获取原文并翻译 | 示例

摘要

Memory arrays occupy a very large area in chip designs; yet memory cell scaling lags significantly transistor scaling. With transistor channel lengths in the nanoscale regime, the six transistor static random access memory (6T-SRAM) and the single transistor dynamic random access memory (DRAM) cells both suffer from excessive leakage current. Therefore, there is a widely recognized need for urgent progress in memory technology to meet the increasing demand for highly for compact, high density and low power memory arrays.;Several new memory device approaches are currently under extensive investigation around the world. One such approach is the thin capacitively coupled thyristor (TCCT) memory cell where a gate assisted PNPN thyristor is utilized as a memory cell, which exploits the ON and the OFF states of the thyristor. TCCT breaks through the performance density trade-off of conventional SRAM and DRAM and it is compatible with CMOS process which make it a promising alternative to the current memory cells. In this dissertation we present a new volatile memory cell with promising characteristics, which improves on the TCCT concept above. The proposed cell is based on the field effect diode (FED), and it is essentially a p-i-n diode to which two closely spaced, independent gates have been added between the anode and the cathode. This new cell is similar to the TCCT in concept and operation, however, the thyristor-like structure is gate-induced in the FED cell whereas it is built-in in the TCCT cell. TCAD simulation results showed that the FED cell has important advantages such as high read 0/1 margins, fast write/read, thermal stability and good retention time.;We also re-evaluate the recent interpretation of the physical storage mechanism of the thyristor based memories as the presence (state "1") or absence (state "0") of charge under the gate: we demonstrate that this interpretation is incorrect, and we describe the correct physical mechanism, by carefully studying the carrier profiles within the TCCT and FED memory cell structures. This new understanding should result in better cell design and feasibility analysis.
机译:存储器阵列在芯片设计中占据了很大的面积。然而存储单元的缩放明显滞后于晶体管的缩放。由于晶体管沟道长度处于纳米级,六个晶体管静态随机存取存储器(6T-SRAM)和单个晶体管动态随机存取存储器(DRAM)单元都遭受过大的泄漏电流。因此,在存储器技术中迫切需要紧急进步,以满足对紧凑,高密度和低功率存储器阵列的高度需求。当今,世界上正在广泛研究几种新的存储器器件方法。一种这样的方法是薄电容耦合晶闸管(TCCT)存储单元,其中栅极辅助PNPN晶闸管被用作存储单元,其利用了晶闸管的ON和OFF状态。 TCCT突破了传统SRAM和DRAM的性能密度折衷,并且与CMOS工艺兼容,这使其成为当前存储单元的有希望的替代品。在本文中,我们提出了一种具有良好前景的新型易失性存储单元,该存储单元对上述TCCT概念进行了改进。拟议的电池基于场效应二极管(FED),本质上是一个p-i-n二极管,在阳极和阴极之间已向其添加了两个紧密间隔的独立栅极。这种新电池在概念和操作上与TCCT相似,但是,晶闸管状结构在FED电池中是栅诱导的,而内置在TCCT电池中。 TCAD仿真结果表明,FED单元具有重要的优势,例如高读取0/1裕量,快速写入/读取,热稳定性和良好的保留时间。;我们还重新评估了基于晶闸管的物理存储机制的最新解释。记忆为闸门下电荷的存在(状态“ 1”)或不存在(状态“ 0”):我们通过仔细研究TCCT中的载流子分布图,证明了这种解释是不正确的,并且我们描述了正确的物理机制。 FED存储器单元结构。这种新的理解应导致更好的电池设计和可行性分析。

著录项

  • 作者

    Badwan, Ahmad Z.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号