首页> 外文学位 >Parallelized Cartesian grid methodology for non-equilibrium hypersonic flow analysis of ballutes.
【24h】

Parallelized Cartesian grid methodology for non-equilibrium hypersonic flow analysis of ballutes.

机译:球的非平衡高超音速流动分析的平行笛卡尔网格方法。

获取原文
获取原文并翻译 | 示例

摘要

Hypersonic flow analysis is performed on an inflatable aerocapture device called a "Ballute" for Titan's Mission. An existing unstructured Cartesian grid methodology is used as a starting point by taking advantage of its ability to automatically generate grids over any deformed shape of the flexible ballute. The major effort for this thesis work is focused on advancing the existing unstructured Cartesian grid methodology. This includes implementing thermochemical nonequilibrium capability and porting it to a parallel computing environment using a Space-Filling-Curve (SFC) based domain decomposition technique.;The implemented two temperature thermochemical nonequilibrium solver governs the finite rate chemical reactions and vibrational relaxation in the high temperature regimes of hypersonic flow. In order to avoid the stiffness problem in the explicit chemical solver, a point implicit method is adopted to calculate the chemical reaction source term. The AUSMPW+ scheme with MUSCL data reconstruction is adopted as the numerical scheme to avoid non-physical oscillations and the carbuncle phenomenon. The results for five species air model and for thirteen species N2-CH4-Ar model to simulate Titan entry are included for verification against DPLR (NASA Ames' structured grid hypersonic flow solver).;The efficient parallel computation of any unstructured grid flow solver requires an adequate grid decomposition strategy because of its complex spatial data structure. The difficulties of even and block-contiguous partitioning in frequently adapting unstructured Cartesian grids are overcome by implementing the 3D Hilbert SFC. Grids constructed by the SFC for parallel environment promise short inter-CPU communication time while maintaining perfect load balancing between CPUs. The load imbalance due to the local solution adaption is simply apportioned by re-segmenting the curve into even pieces. The detailed structure of the 3D Hilbert SFC and parallel computing efficiency results based on this grid partition method are also presented.;Finally, a structural dynamics tool (LS-DYNA) is loosely coupled with the present parallel thermochemical nonequilibrium flow solver to obtain the deformed surface definition of the ballute.
机译:高超音速流动分析是在称为“ Ballute”的可充气航空捕捉设备上进行的,用于Titan的任务。现有的非结构化笛卡尔网格方法被用作起点,因为它具有在柔性球囊的任何变形形状上自动生成网格的能力。本文工作的主要工作集中在改进现有的非结构化笛卡尔网格方法上。这包括实现热化学非平衡能力,并使用基于空间填充曲线(SFC)的域分解技术将其移植到并行计算环境中;所实现的两个温度热化学非平衡求解器可控制有限速率的化学反应和高温下的振动弛豫高超音速流动的制度。为了避免显式化学求解器中的刚度问题,采用点隐式方法来计算化学反应源项。数值方法采用具有MUSCL数据重构的AUSMPW +方案,以避免非物理振荡和碰现象。包括用于模拟Titan进入的五种空气模型和十三种N2-CH4-Ar模型的结果,以针对DPLR(NASA Ames的结构化网格高超音速流求解器)进行验证;;任何非结构化网格流求解器的有效并行计算都需要适当的网格分解策略,因为其复杂的空间数据结构。通过实施3D Hilbert SFC,可以克服在频繁适配的非结构化笛卡尔网格中进行均匀和块连续分区的困难。 SFC为并行环境构建的网格保证了CPU间的通信时间短,同时保持了CPU之间的完美负载平衡。通过将曲线重新分段成均匀的部分,可以简单地分配由于局部解适应而导致的负载不平衡。最后,给出了基于此网格划分方法的3D Hilbert SFC的详细结构和并行计算效率结果。最后,将结构动力学工具(LS-DYNA)与当前的并行热化学非平衡流求解器松散耦合,以获得变形浮子的表面清晰度。

著录项

  • 作者

    Lee, Jin Wook.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号