首页> 外文学位 >Carbonate mineral weathering in mid-latitude watersheds: Importance of calcite and dolomite dissolution on dissolved inorganic carbon acquisition and transport.
【24h】

Carbonate mineral weathering in mid-latitude watersheds: Importance of calcite and dolomite dissolution on dissolved inorganic carbon acquisition and transport.

机译:中纬度流域的碳酸盐矿物风化:方解石和白云石溶解对溶解性无机碳的获取和运输的重要性。

获取原文
获取原文并翻译 | 示例

摘要

The advent of global warming due to anthropogenic forcing has increased awareness of the global carbon cycle. The removal of CO2 from the atmosphere occurs via silicate and carbonate mineral weathering and this CO 2 is "trapped" when carbonate is re-precipitated in the ocean. Only silicate weathering creates a net sink for CO2, while carbonate weathering provides a short-term drawdown on the scale of decades to thousands of years. Silicate mineral dissolution rates however are on the order of thousands to millions of times slower than carbonate mineral weathering. On a human time scale (hundreds of years), the weathering of carbonate minerals may play an important role in the regulation of anthropogenic CO2.; Increased atmospheric CO2 will influence dissolved inorganic carbon (DIC) within global rivers, via the enhancement of mineral weathering. Carbonate mineral solubility in physically open weathering environments is proportional to soil Pco2; so carbonate-weathering intensities should be affected by land use and soil thickness.; To understand the ramifications of increased DIC in rivers, it is imperative to understand watershed scale processes that control and regulate the dissolved inorganic carbon cycle within watersheds. This dissertation investigates the fundamental controls on the acquisition, cycling, and transport of DIC from forested temperate carbonate bearing watersheds in Michigan and Slovenia. These investigations have culminated in an extensive database on ground and river waters that is used to further the understanding of carbonate weathering and DIC fluxes from watersheds.; Watersheds with thicker soils are able to reach greater HCO3 - concentrations, than watersheds with thinner soils. Higher mean annual precipitation in Slovenia allows the Slovenian watersheds to have significantly higher HCO3- and Mg2+ weathering intensities than the Michigan watersheds. In some cases carbonate back precipitation is occurring within the watershed due to high calcite saturation states in the stream waters.; Comparing the volume of carbonate removed from the watershed to the flux of dissolved inorganic carbon from the watershed indicates that back precipitation is negligible in the overall DIC flux from the watershed. Both calcite and dolomite weathering contribute to the DIC flux. In Slovenia, dolomite weathering is contributing approximately half the HCO3- flux from the watershed.
机译:人为强迫导致的全球变暖的出现增加了人们对全球碳循环的认识。通过硅酸盐和碳酸盐矿物的风化作用,从大气中清除CO2,当碳酸盐在海洋中重新沉淀时,该CO 2被“捕获”。只有硅酸盐风化会产生二氧化碳的净汇,而碳酸盐风化会在数十年到数千年的规模内提供短期下降。然而,硅酸盐矿物的溶解速率比碳酸盐矿物的风化慢约数千至数百万倍。在人类时间尺度上(数百年),碳酸盐矿物的风化可能在人为二氧化碳的调节中起重要作用。大气中二氧化碳的增加将通过增强矿物风化作用而影响全球河流中的溶解性无机碳(DIC)。碳酸盐矿物在物理开放的气候环境中的溶解度与土壤Pco2成正比;因此碳酸盐岩的风化强度应受土地利用和土壤厚度的影响。为了了解河流中DIC增加的后果,必须了解控制和调节流域内溶解的无机碳循环的流域规模过程。本文研究了密歇根州和斯洛文尼亚的森林温带碳酸盐分水岭对DIC的获取,循环和运输的基本控制。这些调查最终形成了关于地下水和河流水的广泛数据库,该数据库用于进一步了解流域的碳酸盐风化和DIC通量。与土壤较薄的流域相比,土壤较厚的流域能够达到更高的HCO3-浓度。斯洛文尼亚较高的年平均降水量使斯洛文尼亚流域的HCO3-和Mg2 +风化强度大大高于密歇根流域。在某些情况下,由于溪流水中的方解石饱和状态较高,流域内发生了碳酸盐反沉淀。将流域中去除的碳酸盐的体积与流域中溶解的无机碳的通量进行比较,表明在流域中DIC的总通量中反沉淀可忽略不计。方解石和白云石的风化都有助于DIC通量。在斯洛文尼亚,白云石的风化贡献了流域中HCO3-的通量约一半。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号