首页> 外文学位 >Electrical properties of surface-modified silicon nanomembranes.
【24h】

Electrical properties of surface-modified silicon nanomembranes.

机译:表面改性的硅纳米膜的电性能。

获取原文
获取原文并翻译 | 示例

摘要

Silicon-on-insulator (SOI), a silicon template layer on top of silicon dioxide, has several advantages over conventional bulk silicon, such as reduced junction capacitance and restrained short channel effect. When the silicon film becomes very thin, the surface states and the interface states modify the conductivity and dominate due to bulk charge carriers. Therefore, measurements based on the electrical transport properties will be very sensitive to the surface and interface states, which implies surface-modified silicon nanomembranes could be promising biosensors. Surface functionalization and sensitivity are the most important factors in the development of microarrays and biosensors. We investigate a cold plasma process for surface functionalization and study the electrical properties of surface-modified silicon nanomembranes as a preliminary work toward biosensor application.;H-termination of the silicon nanomembranes is studied as the simplest surface modification. When the Si (100) surface is terminated by hydrogen, the H-terminated Si (100) surface is very conductive and the sheet resistance measured using the van der Pauw method is 3 to 4 orders of magnitude lower than that of oxide termination. The extended work is conducted for a wide range of film thicknesses, exhibiting the dependence of the interplay of the surface states and the bulk states on the film thickness. X-ray photoelectron spectroscopy (XPS) is also employed to investigate the Fermi level pinning caused by the H-termination. We also study a similar electrical transport property of epichlorohydrin-modified silicon membranes.;Ultrathin silicon-on-insulator (UTSOI) at typical doping levels (10 15 cm-3) is easily depleted by interface traps. These detrimental interface trap states can be passivated by annealing using hydrogen or forming gas. Our work shows that the interface trap density can be reduced by an annealing process, and the corresponding reduction in the sheet resistance relies on the film thickness. A numerical calculation is provided to find the interface trap density by fitting the experimental sheet resistance data.;We provide the prospects of UTSOI biosensors using the electrical transport properties studied in this work as well as demonstrate another useful surface functionalization procedure in an effort to form necessary chemical linkers to which biomolecules can be attached.
机译:绝缘体上硅(SOI)是二氧化硅顶部的硅模板层,与传统的体硅相比具有多个优点,例如,结电容减小和短沟道效应得到抑制。当硅膜变得非常薄时,由于大的电荷载流子,表面状态和界面状态会改变导电性并占主导地位。因此,基于电传输性质的测量将对表面和界面状态非常敏感,这意味着表面改性的硅纳米膜可能是有前途的生物传感器。表面功能化和灵敏度是微阵列和生物传感器开发中最重要的因素。我们研究了用于表面功能化的冷等离子体工艺,并研究了表面改性的硅纳米膜的电学性质,这是生物传感器应用的前期工作。硅纳米膜的H端接研究是最简单的表面改性。当Si(100)表面被氢封端时,H端接的Si(100)表面非常导电,使用范德堡方法测得的薄层电阻比氧化物封端低3至4个数量级。对于广泛的膜厚度进行扩展的工作,表现出表面状态和本体状态的相互作用对膜厚度的依赖性。 X射线光电子能谱(XPS)也用于研究由H端引起的费米能级钉扎。我们还研究了环氧氯丙烷改性的硅膜的类似电传输性质。界面陷阱易于耗尽典型掺杂水平(10 15 cm-3)的超薄绝缘体上硅(UTSOI)。这些有害的界面陷阱态可以通过使用氢或形成气体的退火来钝化。我们的工作表明,可以通过退火工艺来降低界面陷阱的密度,而相应的薄层电阻的降低取决于薄膜的厚度。通过拟合实验薄层电阻数据,提供了一个数值计算来找到界面陷阱密度。;我们利用这项工作中研究的电传输特性,为UTSOI生物传感器提供了前景,并展示了另一种有用的表面功能化过程,旨在形成可以连接生物分子的必要化学接头。

著录项

  • 作者

    Ha, Sangkeun.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号