首页> 外文学位 >Iron homeostasis in the central nervous system.
【24h】

Iron homeostasis in the central nervous system.

机译:中枢神经系统中的铁稳态。

获取原文
获取原文并翻译 | 示例

摘要

Iron is an essential, yet highly reactive, metal that needs to be tightly regulated. Excess iron in the central nervous system (CNS) can lead to free radical formation and neurodegeneration. My Ph.D. thesis work is focused on two animal models of neurodegeneration: one uses a null mutation of ceruloplasmin (CP), which in humans causes iron accumulation and neurodegeneration in the CNS; and the other is a gain of function mutation in the superoxide dismutase 1 (SOD1), which causes amyotrophic lateral sclerosis (ALS) in mice/humans. CP is a ferroxidase that converts highly toxic ferrous iron to its non-toxic ferric form. A GPI-anchored form of CP (GPI-CP), expressed by astrocytes, is the major form of CP in the CNS. In my Master's work, the role of CP in iron influx and efflux in vitro using astrocyte cultures from CP-/- and CP +/+ mice was characterized and revealed that iron efflux is completely absent while iron influx into astrocytes is unaffected in the absence of CP.;To understand how the lack of CP causes iron accumulation and neurodegeneration, I carried out a detailed analysis of iron accumulation, dysregulation of iron homeostasis proteins, and loss of astrocytes and neurons in the cerebellum of CP-/- mice during aging. Abnormal iron accumulation is first detected in CP-/- mice by 12 months and peaks at 24 months. Iron accumulation occurs in astrocytes, but not in Purkinje neurons and large neurons in the deep nuclei. The iron importer DMT1 is abnormally increased in these large neurons but not in astrocytes, while ferritin expression is increased in astrocytes. There is also a marked loss of astrocytes and Purkinje neurons in CP-/- mice with age. The loss of astrocytes is likely to be related to iron accumulation while the loss of the Purkinje neurons is likely due to the loss of astrocytic support and lack of sufficient supply of iron from astrocytes.;To assess the contribution of iron to the pathogenesis of ALS, I studied the involvement of iron accumulation and the dysregulation of iron homeostasis in a mouse model of ALS (SOD1G37R). I found excessive iron accumulation in the large motor neurons and glia in the spinals cords of 12-month old SOD1 mice. There was dysregulation in the expression of iron homeostasis proteins, which correlate with the progression of the disease. This iron accumulation in the motor neurons may be due to impaired anterograde axonal transport, as evidenced by a nerve ligation study I carried out. Furthermore, purified mitochondria from SOD1 mice show increased iron accumulation, suggesting a role for iron in mitochondrial dysfunction. Importantly, treatment with a lipophilic iron chelator before the onset of clinical symptoms (8 months of age) extended lifespan by an extra 4.8 weeks, thus pointing to an important role for iron in the progression of disease.;Iron in the CNS is thought to play an important role in many neuroinflammatory conditions due to its redox activity. My work will help further the understanding of how disruption of iron homeostasis can contribute to cell death under various neurodegenerative conditions.;For my Doctoral thesis, I continued to study the role of GPI-CP in astrocytes and showed that GPI-CP is physically associated with the iron efflux transporter ferroportin (FPN). I also assessed whether FPN, a transmembrane protein, is mobilized from non-lipid raft to lipid raft regions of the membrane in response to cellular iron status. Using astrocyte cultures incubated in different iron concentrations, I found that under high iron conditions, there is a rapid relocation of FPN into lipid rafts containing GPI-CP. On the other hand, cells treated with an iron chelator showed decreased FPN expression on the membrane. Therefore, formation of the GPI-CP/FPN complex is essential for cellular iron efflux and the generation of this complex is regulated by cellular iron levels.
机译:铁是必不可少的,但具有高反应性的金属,需要严格控制。中枢神经系统(CNS)中过量的铁可导致自由基形成和神经退行性变。我的博士学位论文的工作集中在两种神经退行性疾病的动物模型上:一种使用铜蓝蛋白(CP)的无效突变,这种突变在人类中引起中枢神经系统中铁的积累和神经退行性变。另一类是超氧化物歧化酶1(SOD1)功能突变的获得,它会在小鼠/人类中引起肌萎缩性侧索硬化(ALS)。 CP是一种铁氧化酶,可将剧毒的亚铁转化为无毒的铁形式。由星形胶质细胞表达的GPI锚定的CP(GPI-CP)是CNS中CP的主要形式。在我的硕士论文中,使用CP-/-和CP + / +小鼠的星形胶质细胞培养物,体外CP在铁的流入和流出中的作用得到了表征,并揭示了铁的流出完全不存在,而铁流入星形胶质细胞在不存在的情况下不受影响。 ;为了了解缺乏CP会如何导致铁蓄积和神经退行性变,我对衰老过程中CP-/-小鼠小脑中的铁蓄积,铁稳态蛋白的失调以及星形胶质细胞和神经元的损失进行了详细的分析。 。首先在CP-/-小鼠中检测到12个月时铁积累异常,并在24个月时达到峰值。铁积累发生在星形胶质细胞中,而不发生在浦肯野神经元和深核的大神经元中。在这些大的神经元中,铁进口商DMT1异常增加,但在星形胶质细胞中却没有,而在星形胶质细胞中铁蛋白的表达增加了。随着年龄的增长,CP-/-小鼠的星形胶质细胞和浦肯野神经元也明显减少。星形胶质细胞的丢失很可能与铁的积累有关,而浦肯野神经元的丢失很可能是由于星形胶质细胞的缺乏和星形胶质细胞缺乏足够的铁。 ,我研究了ALS(SOD1G37R)小鼠模型中铁蓄积的参与和铁稳态的失调。我在12个月大的SOD1小鼠的脊髓中发现大型运动神经元和神经胶质细胞中过多的铁蓄积。铁稳态蛋白的表达失调,与疾病的进展有关。运动神经元中的铁积累可能是由于顺行性轴突运输受损所致,正如我进行的神经结扎研究所证明的那样。此外,从SOD1小鼠纯化的线粒体显示出增加的铁积累,表明铁在线粒体功能障碍中起作用。重要的是,在出现临床症状(8个月大)之前用亲脂性铁螯合剂进行治疗可将寿命延长4.8周,因此指出铁在疾病进展中的重要作用。由于其氧化还原活性,在许多神经炎性疾病中起重要作用。我的工作将有助于进一步理解铁稳态的破坏在各种神经退行性疾病下如何导致细胞死亡。;在我的博士论文中,我继续研究了GPI-CP在星形胶质细胞中的作用,并证明了GPI-CP在物理上是相关的与铁外排转运蛋白铁转运蛋白(FPN)。我还评估了FPN(一种跨膜蛋白)是否响应细胞铁状态从非脂筏转移到膜的脂筏区域。使用在不同铁浓度下孵育的星形胶质细胞培养物,我发现在高铁条件下,FPN迅速重新定位到含有GPI-CP的脂质筏中。另一方面,用铁螯合剂处理的细胞在膜上显示出FPN表达降低。因此,GPI-CP / FPN复合物的形成对于细胞铁的流出至关重要,并且该复合物的生成受细胞铁水平的调节。

著录项

  • 作者

    Jeong, Suh Young.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 251 p.
  • 总页数 251
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号