首页> 外文学位 >Gyrokinetic deltaf particle simulation of collisionless trapped electron mode and toroidicity-induced Alfven eigenmode.
【24h】

Gyrokinetic deltaf particle simulation of collisionless trapped electron mode and toroidicity-induced Alfven eigenmode.

机译:无碰撞俘获电子模式和超环性诱导的Alfven本征模式的陀螺动力学delf粒子模拟。

获取原文
获取原文并翻译 | 示例

摘要

In toroidal magnetically confined plasmas, the turbulent transport driven by collisionless trapped electron modes (CTEM) is systematically investigated using three-dimensional gyrokinetic deltaf particle-in-cell simulations. Scalings with local plasma parameters are studied. Mode coupling theory and gyrokinetic turbulence simulation are used to study the nonlinear saturation mechanisms of CTEM turbulence. Turbulence simulations show that the importance of zonal flow is parameter sensitive, but is well characterized by the E x B shearing rate formula. The importance of zonal flow is found to be sensitive to temperature ratio, magnetic shear and electron temperature gradient. For parameter regimes where zonal flow is unimportant, zonal density (a purely radial density perturbation) is generated and is found to be the dominant saturation mechanism. In fact, CTEM turbulence saturates at physically reasonable levels with or without zonal flow. This is in stark contrast to ion-temperature-gradient driven turbulence where the zonal flow has an order of magnitude effect on the saturation level. A toroidal mode coupling theory is developed that agrees well with simulation in the initial nonlinear saturation phase (before fully developed turbulence ensues). The theory predicts nonlinear generation of the zonal density and then the feedback and nonlinear saturation of the unstable mode. The spectrum change from the linear stage to the nonlinear stage is also observed in CTEM turbulence and is reported here.;We have also utilized the gyrokinetic deltaf particle-in-cell code to investigate the toroidicity-induced Alfven eigenmode (TAE) in tokamak plasmas. The gyrokinetic code is reduced to a two-fluid model and is successfully benchmarked with an analytical theory [1] and an MHD eigenmode analysis for TAE mode frequency and mode structure. After the gyrokinetic energetic particles are added, the TAE is driven unstable. The scaling of the growth rate with the central energetic particle pressure agrees well with the MHD theory.
机译:在环形磁约束等离子体中,使用三维陀螺三角洲粒子模拟,系统地研究了无碰撞俘获电子模式(CTEM)驱动的湍流传输。研究了具有局部血浆参数的标度。利用模式耦合理论和动荡湍流仿真研究了CTEM湍流的非线性饱和机理。湍流模拟表明,纬向流动的重要性对参数敏感,但通过E x B剪切速率公式可以很好地表征。发现区域流的重要性对温度比,磁切变和电子温度梯度很敏感。对于区域流量不重要的参数体系,会产生区域密度(纯粹是径向密度扰动),并且被发现是主要的饱和机理。实际上,无论有无区域气流,CTEM湍流都会在物理上合理的水平上饱和。这与离子温度梯度驱动的湍流形成了鲜明的对比,在离子湍流中,纬向流对饱和度有一定数量级的影响。提出了一种环形模态耦合理论,该理论与初始非线性饱和阶段中的模拟非常吻合(随后便产生了充分的湍流)。该理论预测区域密度的非线性生成,然后预测不稳定模式的反馈和非线性饱和。在CTEM湍流中也观察到了从线性阶段到非线性阶段的光谱变化,并在此处进行了报道。;我们还利用了旋流动力学的delf粒子内代码研究了托卡马克等离子体中由环型诱导的Alfven本征模(TAE) 。陀螺动力学代码简化为两流体模型,并成功地用解析理论[1]和MHD本征模分析对TAE模频率和模结构进行了基准测试。添加回旋动力学含能粒子后,TAE被驱动不稳定。增长率与中心高能粒子压力的比例关系与MHD理论非常吻合。

著录项

  • 作者

    Lang, Jianying.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Plasma physics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号