首页> 外文学位 >Durability study and multi-physics based life prediction method investigation of a solid oxide fuel cell.
【24h】

Durability study and multi-physics based life prediction method investigation of a solid oxide fuel cell.

机译:固体氧化物燃料电池的耐久性研究和基于多物理场的寿命预测方法研究。

获取原文
获取原文并翻译 | 示例

摘要

The durability of solid oxide fuel cell (SOFC) is generally quite good, but the science and engineering associated with the mechanisms that control that durability is not well developed. In order to obtain long cell-life performance, it is critical to explore the major causes of performance deterioration and to develop precautions against them. Generally, SOFC performance degradation is a combined result of different time-dependent changes in the characteristics of cell materials such as microstructures and material properties, element migration, impurity or compound formation, etc.; This research is designed to understand degradation mechanisms and correlate them to the measured performance. 10 mol.% scandia stabilized zirconia (10ScSZ) electrolyte pellets are fabricated and aged for 1500 hours. The material properties of as sintered and as-aged samples are characterized by XRD, FESEM, EBSD, AFM, AC/DC electrochemical impedance spectroscopy, nanoindentation, and microindentation, ageing test results demonstrate the ionic conductivity degradation with the ageing time. Although both bulk and grain boundary conductivites decrease due to ageing, the ionic conductivity is governed by grain boundary conductivity.; Lanthanum strontium ferrite cathode (LSF40) and 6 mol% scandia stabilized zirconia (6ScSZ) symmetric cathode half cell shows three major resistances from series resistance (RS), interfacial ionic transfer resistance (Ri), and cathode surface oxygen exchange reaction resistance (R C); Cathode surface oxygen exchange reaction resistance accounts for over 70% of total resistance at all measured temperature ranges. Electrochemical ageing tests illustrate that series resistance (RS) and cathode surface oxygen exchange reaction resistance (RC) have experienced severe degradation in performance. Interfacial ionic transfer resistance (R i) has relatively much smaller absolute value and changes due to ageing, which indicated the prevented interfacial reaction between 6ScSZ electrolyte and LSF cathode. The observed in situ electrolyte sintering causes grain growth, accumulative pore volume decrease, and improved the mechanical properties (Young's modulus, hardness, fracture toughness, and interfacial energy release rate).; LSCo-La0.6Sr0.4CoO3/LSGM/Ni electrolyte-supported tubular SOFC under study, cathode morphology change is observed that can be the cause for cell degradation. Cathode/electrolyte interface interaction can also be a cause. Received LSCF/6ScSZ/Ni full-cell exhibit degradation under 850°C with 0.7 V loads. AC impedance data shows electrolyte and cathode polarization are 90% of the total resistance. They are also responsible for cell degradation. There is an additional diffusion layer formed at the cathode/electrolyte interface for received LSCF/6ScSZ/Ni full-cell that can be the reason for increased cathode polarization due to ageing.; Finally, a 2-D axi-symmetric multi-physics model is built to study the relationship between time-dependent property changes and cell performance in order to obtain insight into the main causes for the increasing/decreasing pattern of the performance of the solid oxide fuel cell. Real material microstructure from SEM is also analyzed for size dependent and geometry restrains on electrolyte ionic conductivity.; Suggestions are given for future research activities in cathode/electrolyte ageing characterization, cathode microstructure optimization from nano-scale manufacturing, and related systematic SOFC life prediction methodologies.
机译:固体氧化物燃料电池(SOFC)的耐久性通常相当不错,但是与控制该耐久性的机制相关的科学和工程技术尚不完善。为了获得较长的细胞寿命性能,探索性能下降的主要原因并制定预防措施至关重要。通常,SOFC性能下降是电池材料特性(例如微观结构和材料特性,元素迁移,杂质或化合物形成等)随时间变化的综合结果;本研究旨在了解降解机理,并将其与测得的性能相关联。制备10mol。%的scan稳定氧化锆(10ScSZ)电解质颗粒,并老化1500小时。 XRD,FESEM,EBSD,AFM,AC / DC电化学阻抗谱,纳米压痕和微压痕表征了烧结和老化样品的材料性能,老化测试结果表明离子电导率随老化时间而降低。尽管随着时间的流逝,整体和晶界电导率均降低,但离子电导率却受晶界电导率控制。镧锶铁氧体阴极(LSF40)和6 mol%scan稳定氧化锆(6ScSZ)对称阴极半电池显示出串联电阻(RS),界面离子转移电阻(Ri)和阴极表面氧交换反应电阻(RC)的三个主要电阻;在所有测得的温度范围内,阴极表面氧交换反应的电阻占总电阻的70%以上。电化学老化测试表明,串联电阻(RS)和阴极表面氧交换反应电阻(RC)的性能严重下降。界面离子转移电阻(R i)的绝对值相对较小,并且会由于老化而发生变化,这表明6ScSZ电解质与LSF阴极之间的界面反应得到了阻止。观察到的原位电解质烧结导致晶粒长大,累积的孔体积减少,并改善了机械性能(杨氏模量,硬度,断裂韧性和界面能释放速率)。在研究LSCo-La0.6Sr0.4CoO3 / LSGM / Ni电解质支持的管状SOFC时,观察到阴极形态变化可能是导致电池降解的原因。阴极/电解质界面的相互作用也可能是原因。接收到的LSCF / 6ScSZ / Ni全电池在850°C和0.7V负载下表现出退化。交流阻抗数据显示电解质和阴极极化占总电阻的90%。它们还负责细胞降解。阴极/电解质界面处形成了一个额外的扩散层,用于接收的LSCF / 6ScSZ / Ni全电池,这可能是由于老化导致阴极极化增加的原因。最后,建立二维轴对称多物理场模型来研究随时间变化的特性变化与电池性能之间的关系,以便深入了解导致固体氧化物性能提高/降低模式的主要原因燃料电池。还分析了SEM的真实材料微观结构的尺寸依赖性和几何形状对电解质离子电导率的限制。提出了有关阴极/电解质老化表征,纳米级制造中阴极微结构优化以及相关系统SOFC寿命预测方法的未来研究活动的建议。

著录项

  • 作者

    Ju, Gang.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号