首页> 外文学位 >An inexact interior-point algorithm for conic convex optimization problems.
【24h】

An inexact interior-point algorithm for conic convex optimization problems.

机译:锥凸优化问题的不精确内点算法。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation we study an algorithm for convex optimization problems in conic form. (Without loss of generality, any convex problem can be written in conic form.) Our algorithm belongs to the class of interior-point methods (IPMs), which have been associated with many recent theoretical and algorithmic advances in mathematical optimization. In an IPM one solves a family of slowly-varying optimization problems that converge in some sense to the original optimization problem. Each problem in the family depends on a so-called barrier function that is associated with the problem data. Typically IPMs require evaluation of the gradient and Hessian of a suitable ("self-concordant") barrier function. In some cases such evaluation is expensive; in other cases formulas in closed form for a suitable barrier function and its derivatives are unknown. We show that even if the gradient and Hessian of a suitable barrier function are computed inexactly, the resulting IPM can possess the desirable properties of polynomial iteration complexity and global convergence to the optimal solution set.; In practice the best IPMs are primal-dual methods, in which a convex problem is solved together with its dual, which is another convex problem. One downside of existing primal-dual methods is their need for evaluation of a suitable barrier function, or its derivatives, for the dual problem. Such evaluation can be even more difficult than that required for the barrier function associated with the original problem. Our primal-dual IPM does not suffer from this drawback---it does not require exact evaluation, or even estimates, of a suitable barrier function for the dual problem.; Given any convex optimization problem, Nesterov and Nemirovski showed that there exists a suitable barrier function, which they called the universal barrier function. Since this function and its derivatives may not be available in closed form, we explain how a Monte Carlo method can be used to estimate the derivatives. We make probabilistic statements regarding the errors in these estimates, and give an upper bound on the minimum Monte Carlo sample size required to ensure that with high probability, our primal-dual IPM possesses polynomial iteration complexity and global convergence.
机译:本文研究了一种圆锥形式的凸优化问题的算法。 (不失一般性,任何凸问题都可以用圆锥形式表示。)我们的算法属于内点法(IPM)的一类,它与数学优化中的许多最新理论和算法进展有关。在IPM中,它解决了一系列缓慢变化的优化问题,这些问题在某种意义上收敛于原始优化问题。家庭中的每个问题都取决于与问题数据相关的所谓的障碍函数。通常,IPM需要评估适当的(“自协调”)势垒函数的梯度和Hessian。在某些情况下,这种评估很昂贵;在其他情况下,用于合适屏障函数的封闭式公式及其导数是未知的。我们表明,即使不正确地计算了合适的障碍函数的梯度和Hessian,所得的IPM仍具有多项式迭代复杂度和全局收敛到最优解集的理想特性。在实践中,最佳的IPM是原始对偶方法,其中凸问题及其对偶问题一起被解决,这是另一个凸问题。现有的原始对偶方法的一个缺点是它们需要评估对偶问题的合适的势垒函数或其导数。这种评估可能比与原始问题相关的屏障功能所需的评估更加困难。我们的原始对偶IPM不受此缺点的困扰-它不需要对双重问题的合适屏障函数进行精确评估,甚至不需要估算。给定任何凸优化问题,内斯特罗夫和内米罗夫斯基证明存在一个合适的势垒函数,他们称其为通用势垒函数。由于此函数及其导数可能无法以封闭形式提供,因此我们解释了如何使用蒙特卡洛方法来估计导数。我们对这些估计中的误差做出概率陈述,并给出了最小蒙特卡洛样本大小的上限,以确保我们的原始对偶IPM具有多项式迭代复杂性和全局收敛性。

著录项

  • 作者

    Schurr, Simon Peter.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号