首页> 外文学位 >Amine boranes, polyboranes and boron -based polymers: Syntheses and reactivities.
【24h】

Amine boranes, polyboranes and boron -based polymers: Syntheses and reactivities.

机译:胺硼烷,聚硼烷和硼基聚合物:合成和反应性。

获取原文
获取原文并翻译 | 示例

摘要

Iodine oxidation of B3H8-- in glyme solution to produce (glyme)B3H7, followed by displacement of the coordinated glyme by reaction with anhydrous ammonia provides a safe and convenient preparation of ammonia triborane, NH3B 3H7. X-ray crystallographic determinations and DFT computational studies of both NH3B3H7 and the NH3 B3H7·18-crown-6 adduct demonstrate that while computations predict a symmetric single bridging-hydrogen conformation, NH3B3H7 has a highly asymmetric structure in the solid-state that results from intermolecular N-H+-H ---B dihydrogen bonding interactions. Comparisons of the experimentally-observed solution and DFT/GIAO-calculated 11B NMR chemical shifts for NH3B3H7 indicate that these intermolecular interactions also lead to aggregate formation in solution. Studies of its hydrolytic reactions have shown that upon the addition of acid or an appropriate transition metal catalyst, aqueous solutions of NH3B3H 7 rapidly release hydrogen, with 6.1 materials-wt% H2-release being achieved from a 22.7-wt% aqueous solution of NH3B3H 7 at room temperature in the presence of 5wt%-Rh/Al2O 3 (1.1 mol%). The rate of H2-release can be controlled by both the catalyst loadings and temperature. Likewise, NH3B 3H7 was shown to act as an efficient promotor for thermolytic H2 release from NH3B3 when used with proton sponge. Model studies suggested that the [B3H7NH 2]-- anion may be a key intermediate for the anionic polymerization of NH3B3.;Quantum mechanical computational studies of possible mechanistic pathways for B10H13-- dehydrogenative alkyne-insertion and olefin-hydroboration reactions demonstrate that, depending on the reactant and reaction conditions, B10H13-- can function as either an electrophile or nucleophile. For reactions with nucleophilic alkynes, such as propyne, the calculations indicate that at the temperatures (∼110-120°C) required for these reactions, the ground state B10H13-- (1) structure can rearrange to an electrophilic-type cage structure 3 having a LUMO orbital strongly localized on the B6 cage-boron. Alkyne binding at this site followed by subsequent steps involving the formation of additional boron-carbon bonds, hydrogen-elimination, protonation and further hydrogen-elimination then lead in a straightforward manner to the experimentally observed ortho-carborane products resulting from alkyne-insertion into the decaborane framework. A similar mechanistic sequence was identified for the reaction of propyne with 6-R-B10H12-- leading to the formation of 1-Me-3-R-1,2-C2B10H 11 carboranes. On the other hand, both B10H13 -- and 4,6-C2B7H12-- have previously been shown to react at much lower temperatures with strongly polarized alkynes and the DFT and IRC calculations support an alternative mechanism involving initial nucleophilic attack by these polyborane anions at the positive terminal acetylenic carbon to produce terminally substituted olefinic anions. In the case of the B10H13-- reaction, subsequent cyclization steps were identified that provide a pathway to the experimentally observed arachno-8-(NC)-7,8-C 2B10H14-- carborane. The computational study of B10H13-- propylene-hydroboration also supports a mechanistic pathway involving a cage rearrangement to the electrophilic 3 structure. Olefin-binding at the LUMO orbital localized on the B6 cage-boron, followed by addition of the B6-H group across the olefinic double bond and protonation then leads to the experimentally observed 6-R-B10H13 products.;Poly(6-hexenyldecaborane) polymers (PHDB's) were prepared from 6-(CH2=CH(CH2)4)-B10H14 (6-hexenyldecaborane, HDB) using Brookhart catalysts. Molecular weight measurements with GPC using both multiangle laser light scattering (MALLS) and differential refractive index (DRI) detectors showed that the molecular weight distributions of the resulting PHDB's were multimodal, while the resulting PHOC's showed well-defined molecular weight distributions that were 4-5 times higher than those obtained by using the previously reported early transition-based catalyst system, Cp2ZrMe2/B(C 6F5)3.
机译:碘在甘氨酸溶液中氧化B3H8-生成(甘醇)B3H7,然后通过与无水氨反应置换配位的甘氨酸,提供了安全,便捷的氨三硼烷NH3B 3H7的制备方法。 NH3B3H7和NH3 B3H7·18-crown-6加合物的X射线晶体学测定和DFT计算研究表明,尽管计算预测了对称的单桥氢构象,但NH3B3H7在固态中具有高度不对称的结构,这是由于分子间的N-H + -H --- B二氢键相互作用。实验观察到的溶液与DFT / GIAO计算的NH3B3H7的11B NMR化学位移的比较表明,这些分子间的相互作用也导致溶液中形成聚集体。其水解反应的研究表明,在添加酸或适当的过渡金属催化剂后,NH3B3H 7的水溶液会迅速释放氢,从22.7 wt%的NH3B3H水溶液中释放出6.1重量%的H2。在室温下在5wt%-Rh / Al 2 O 3(1.1mol%)的存在下,得到图7所示的化合物。 H 2的释放速率可以通过催化剂的负载量和温度来控制。同样,当与质子海绵一起使用时,NH3B 3H7被证明是从NH3B3中热解H2的有效促进剂。模型研究表明,[B3H7NH 2]-阴离子可能是NH3B3阴离子聚合的关键中间体。; B10H13可能机理的定量力学计算研究-脱氢炔烃插入和烯烃加氢硼化反应表明,取决于在反应物和反应条件上,B10H13--可以用作亲电试剂或亲核试剂。对于与亲核炔烃(例如丙炔)的反应,计算表明在这些反应所需的温度(约110-120°C)下,基态B10H13--(1)结构可以重新排列为亲电型笼状结构3 LUMO轨道强烈定位在B6笼硼上。炔在该位点结合,随后进行的步骤包括形成额外的硼碳键,氢消除,质子化和进一步氢消除,然后以直接方式直接导致实验观察到的炔烃插入邻苯甲烃产物中。十硼烷框架。丙炔与6-R-B10H12的反应机理相似,导致形成1-Me-3-R-1,2-C2B10H 11碳硼烷。另一方面,先前已证明B10H13和4,6-C2B7H12与强极性炔烃在更低的温度下反应,DFT和IRC计算支持另一种机制,涉及这些多硼烷阴离子在初始温度下的亲核攻击。正炔基碳末端产生末端取代的烯烃阴离子。在B10H13--反应的情况下,确定了后续的环化步骤,这些步骤为通向实验观察到的arachno-8-(NC)-7,8-C 2B10H14-碳硼烷提供了途径。对B10H13-丙烯氢硼化的计算研究也支持涉及笼型重排至亲电子3结构的机制途径。在LUMO轨道上的烯烃结合位于B6笼硼上,然后在烯烃双键上加成B6-H基团并质子化,然后产生了实验观察到的6-R-B10H13产物。;聚(6-己烯基十硼烷) )聚合物(PHDB)是使用Brookhart催化剂从6-(CH2 = CH(CH2)4)-B10H14(6-己烯基十硼烷,HDB)制备的。使用多角度激光散射(MALLS)和示差折光指数(DRI)检测器进行的GPC分子量测量表明,所得PHDB的分子量分布是多峰的,而所得PHOC的分子量分布明确,为4-比使用先前报道的基于早期过渡型催化剂的系统Cp2ZrMe2 / B(C 6F5)3高5倍。

著录项

  • 作者

    Yoon, Chang Won.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Chemistry Inorganic.;Chemistry Physical.;Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 280 p.
  • 总页数 280
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号