首页> 外文学位 >Facilitating higher-fidelity simulations of axial compressor instability and other turbomachinery flow conditions.
【24h】

Facilitating higher-fidelity simulations of axial compressor instability and other turbomachinery flow conditions.

机译:促进轴向压缩机不稳定性和其他涡轮机械流动条件的高保真度仿真。

获取原文
获取原文并翻译 | 示例

摘要

The quest to accurately capture flow phenomena with length-scales both short and long and to accurately represent complex flow phenomena within disparately sized geometry inspires a need for an efficient, high-fidelity, multi-block structured computational fluid dynamics (CFD) parallel computational scheme. This research presents and demonstrates a more efficient computational method by which to perform multi-block structured CFD parallel computational simulations, thus facilitating higher-fidelity solutions of complicated geometries (due to the inclusion of grids for "small'' flow areas which are often merely modeled) and their associated flows. This computational framework offers greater flexibility and user-control in allocating the resource balance between process count and wall-clock computation time.; The principal modifications implemented in this revision consist of a "multiple grid block per processing core'' software infrastructure and an analytic computation of viscous flux Jacobians. The development of this scheme is largely motivated by the desire to simulate axial compressor stall inception with more complete gridding of the flow passages (including rotor tip clearance regions) than has been previously done while maintaining high computational efficiency (i.e., minimal consumption of computational resources), and thus this paradigm shall be demonstrated with an examination of instability in a transonic axial compressor. However, the paradigm presented herein facilitates CFD simulation of myriad previously impractical geometries and flows and is not limited to detailed analyses of axial compressor flows.; While the simulations presented herein were technically possible under the previous structure of the subject software, they were much less computationally efficient and thus not pragmatically feasible; the previous research using this software to perform three-dimensional, full-annulus, time-accurate, unsteady, full-stage (with sliding-interface) simulations of rotating stall inception in axial compressors utilized tip clearance periodic models, while the scheme here is demonstrated by a simulation of axial compressor stall inception utilizing gridded rotor tip clearance regions. As will be discussed, much previous research---experimental, theoretical, and computational---has suggested that understanding clearance flow behavior is critical to understanding stall inception, and previous computational research efforts which have used tip clearance models have begged the question, "What about the clearance flows?''. This research begins to address that question.
机译:寻求精确捕获长短尺度的流现象并准确表示大小不同的几何体中的复杂流现象的需求激发了对高效,高保真,多块结构化计算流体动力学(CFD)并行计算方案的需求。这项研究提出并演示了一种更有效的计算方法,通过该方法可以执行多块结构的CFD并行计算仿真,从而为复杂几何形状的高保真度解决方案提供便利(由于对于“小”流动区域包括了网格,这些网格通常只是此模型计算框架提供了更大的灵活性和用户控制权,可以在过程计数和挂钟计算时间之间分配资源平衡。;此版本中实现的主要修改包括“每个处理核心多个网格块” ''软件基础设施和粘性通量雅可比方程的解析计算。该方案的发展很大程度上是由以下需求推动的:模拟轴向压缩机失速开始时,与以前相比,在保持较高的计算效率(即最小的计算资源消耗)的情况下,对流道(包括转子尖端间隙区域)进行了更完整的网格化),因此应通过检查跨音速轴向压缩机的不稳定性来证明该范例。但是,本文提出的范例便于对以前不切实际的几何形状和流量进行CFD模拟,并且不限于对轴向压缩机流量的详细分析。尽管本文介绍的仿真在主题软件的先前结构下在技术上是可行的,但它们的计算效率要低得多,因此在实用上是不可行的。以前使用此软件对轴向压缩机旋转失速开始进行三维,全环空,时间精确,不稳定,全阶段(带有滑动界面)模拟的研究是利用叶尖间隙周期模型进行的,而此处的方案是通过使用网格化的转子叶尖间隙区域对轴向压缩机失速开始进行的仿真证明。正如将要讨论的那样,许多以前的研究-实验,理论和计算-都建议了解间隙流动行为对于了解失速开始至关重要,并且先前使用尖端间隙模型的计算研究工作也提出了这个问题, “通关流量怎么样?”。这项研究开始解决这个问题。

著录项

  • 作者

    Herrick, Gregory Paul.;

  • 作者单位

    Mississippi State University.$bAerospace Engineering.;

  • 授予单位 Mississippi State University.$bAerospace Engineering.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号