首页> 外文学位 >Gas sensing mechanisms in chemiresistive metal phthalocyanine nanofilms.
【24h】

Gas sensing mechanisms in chemiresistive metal phthalocyanine nanofilms.

机译:化学阻性金属酞菁纳米膜中的气体传感机理。

获取原文
获取原文并翻译 | 示例

摘要

Chemiresistive films of metallophthalocyanines (MPcs; M = Fe, Co, Ni, Cu, Zn, and H2) are shown to be sensitive to gas phase electron donors and acceptors. The mechanism of sensing occurs through coordination of the analyte molecule to metal center of the phthalocyanine; electron donors cause film current losses by trapping of charge carriers, while electron acceptors causes current gains by generation of charge carriers within the film. Vapor phase peroxides may cause gains or losses of film current by electrocatalytic processes dependent on the metal center.; MPcs featuring varied metal centers and peripheral substituents are prepared via literature procedures. A novel route is devised for synthesis of a copper phthalocyanine incorporating the 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) group. MPc films are deposited by organic molecular beam epitaxy (OMBE) and spin-coating; film morphologies are examined by atomic force microscopy (AFM). It is demonstrated that substrate temperature during OMBE deposition can significantly alter grain morphology. Spin-coating offers a cost-effective alternative to OMBE, with soluble, functionalized phthalocyanines. The roles of solvent and functional group are explored and procedures for preparing uniform amorphous films are described.; The differing mechanisms of sensing in metal-free phthalocyanine (H 2Pc) and metalated phthalocyanines (MPc) are examined with respect to electron-donating (basic) analytes. MPc sensitivities to vapor phase electron donors are correlated exponentially with analyte basicity as described by binding enthalpy, consistent with the van't Hoff equation and the standard free energy of reaction. Coordination of analytes to the phthalocyanine metal center (MPc) or inner protons (H2Pc) is the dominant mechanism of chemical sensing for basic analytes. Sensor recovery times t90 are demonstrated to depend exponentially on binding enthalpy. Linear discriminant analysis is used to identify analytes. Single sensor normalization of analyte concentration leads to excellent discrimination and identification of analytes.; MPc sensing arrays are shown to be redox-selective vapor sensors of hydrogen peroxide and di-t-butyl peroxide. These peroxides cause unique current losses in CoPc sensors and current gains in FePc, NiPc, CuPc, ZnPc, and H2Pc sensors. Detection limits of 50 ppb and 250 ppb are achieved for hydrogen peroxide and di-t-butyl peroxide, respectively. Oxidation and reduction of peroxides via catalysis at the phthalocyanine surface is consistent with the pattern of sensor responses. Differential analysis by redox contrast of a small array of sensors thus uniquely identifies peroxide vapors.; Chemically sensitive field-effect transistors (ChemFETs) of ZnPc are evaluated for use as vapor sensors. The average carrier mobility is 1.3x10 -4 cm2 V-1 s-1, comparable to previously reported phthalocyanine mobility values. ZnPc ChemFETs display persistent photoconductivity, lasting up to 1.5 months, which induces significant baseline drift. Persistent photoconductivity and sensor instability require improvements to the ZnPc ChemFET architecture before its implementation as vapor sensors.
机译:金属酞菁的化学阻滞膜(MPcs; M = Fe,Co,Ni,Cu,Zn和H2)显示对气相电子给体和受体敏感。感测机制是通过将分析物分子与酞菁的金属中心配位而发生的。电子给体通过捕获电荷载流子而引起薄膜电流损失,而电子受体通过在膜内产生电荷载流子而引起电流增益。气相过氧化物可能通过取决于金属中心的电催化过程引起膜电流的增加或减少。通过文献方法制备具有各种金属中心和外围取代基的MPc。设计了一种新的路线,用于合成结合有1,1,1,3,3,3-六氟丙烷-2-醇(HFIP)基团的铜酞菁。 MPc薄膜通过有机分子束外延(OMBE)和旋涂法沉积;通过原子力显微镜(AFM)检查薄膜的形态。结果表明,OMBE沉积过程中的衬底温度会显着改变晶粒形态。旋涂提供了可溶的,功能化的酞菁类化合物,是OMBE的一种经济高效的替代品。探讨了溶剂和官能团的作用,并描述了制备均匀无定形膜的程序。针对给电子(碱性)分析物,研究了无金属酞菁(H 2Pc)和金属化酞菁(MPc)中不同的传感机理。如通过结合焓所描述的,与气相电子给体的MPc敏感性与分析物的碱度呈指数相关,与范霍夫方程和标准反应自由能一致。分析物与酞菁金属中心(MPc)或内部质子(H2Pc)的配位是对基本分析物进行化学传感的主要机制。传感器恢复时间t90被证明与结合焓成指数关系。线性判别分析用于鉴定分析物。对分析物浓度进行单传感器归一化,可以对分析物进行出色的区分和鉴定。 MPc传感阵列显示为过氧化氢和过氧化二叔丁基的氧化还原选择性蒸汽传感器。这些过氧化物会在CoPc传感器中造成独特的电流损耗,并在FePc,NiPc,CuPc,ZnPc和H2Pc传感器中产生电流增益。过氧化氢和过氧化二叔丁基分别达到50 ppb和250 ppb的检出限。通过酞菁表面的催化氧化和还原过氧化物与传感器响应的模式一致。因此,通过一小部分传感器的氧化还原对比进行的差异分析可以唯一地识别过氧化物蒸气。对ZnPc的化学敏感场效应晶体管(ChemFET)进行了评估,以用作蒸汽传感器。平均载流子迁移率是1.3x10 -4 cm2 V-1 s-1,与以前报道的酞菁迁移率值相当。 ZnPc ChemFET具有持久的光电导性,可长达1.5个月,从而引起明显的基线漂移。持久的光电导性和传感器的不稳定性要求在将ZnPc ChemFET架构实现为蒸汽传感器之前对其进行改进。

著录项

  • 作者

    Bohrer, Forest I.;

  • 作者单位

    University of California, San Diego.$bChemistry.;

  • 授予单位 University of California, San Diego.$bChemistry.;
  • 学科 Chemistry Analytical.; Chemistry Inorganic.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;无机化学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号