首页> 外文学位 >The Formation Mechanism of Mesoporous Materials studied by EPR Spectroscopy and Cryo-TEM.
【24h】

The Formation Mechanism of Mesoporous Materials studied by EPR Spectroscopy and Cryo-TEM.

机译:EPR光谱和低温TEM研究了介孔材料的形成机理。

获取原文
获取原文并翻译 | 示例

摘要

Ordered mesoporous materials raised a wide interest in the scientific community due to their unique structural properties which encompasses nanosize ordered channels. These materials have potential applications in diverse technological fields such as catalysis, membranes, microelectronics and sensors. The formation of these materials is initiated by the interaction of micelle of surfactant molecules with precursors of an inorganic oxide, usually silica, which further polymerizes to form solids with a well defined pore structure and amorphous walls.;The aim of this study is to explore the details of this intriguing reaction mechanism on two types of materials, hexagonal and cubic, prepared with Pluronic block-copolymers as surfactants. The Pluronic micelles are characterized by a hydrophobic polypropylene oxide core and a hydrophilic polyethylene oxide corona. Examples of questions we address are: How does a homogeneous micellar solution transforms into an ordered phase? What kinds of interactions are responsible to this transformation?;Our work focused on processes that take place on two levels, the molecular one and the mesoscale, which were investigated by combining electron paramagnetic resonance (EPR) and cryogenic transmission electron microscopy (cryo-TEM) techniques. The molecular level studies combine in-situ and freeze quench EPR spectroscopic techniques applied to nitroxide spin-probes introduced (at minute quantities) into the reaction mixtures. The nitroxide radicals serve as paramagnetic probes in the reaction mixture. They do not react or affect the reaction product but they sense in-situ the changes that occur in their environment during the reaction. The EPR spectrum provides information regarding the dynamic of the probe, which is affected by its surrounding, and the polarity of its environment. Fine structural details, such as the distribution of water and additives within the micelle, can be obtained from Electron Spin Echo Envelope Modulation (ESEEM) techniques that measure weak superhyperfine interactions of an electron spin with nearby nuclear spins. Double Electron Electron Resonance (DEER), which measure the interaction between electron spins in the range of 1.5--7 nm, can track changes in micelle size and aggregation numbers. The evolution of the microstructures during the reaction was studied by cryo-TEM, through collaboration with Prof. Ishii Talmon from the Technion, Haifa, Israel.;Using these methods the formation mechanisms of hexagonal SBA-15 material and the cubic KIT-6 material were explored. These showed that the formation of these mesoporous materials starts with the penetration of silicate ions into the corona of the micelles. This is driven either by charge matching or hydrogen bonding, mediated by the anions present in solution. The hydrolysis and condensation of the silicate ions in the corona region removes water from the corona and causes change in the micellar curvature. This leads to rearrangement of the original micellar morphology, mainly lengthening the micelles, followed by condensation of the silicate-covered micelles into ordered phase. This then transforms into an ordered hexagonal phase in the case of SBA-15, whereas in the case of the cubic KIT-6, the hexagonal phase transforms into the cubic phase. The transformation occurs within the presence of butanol added either at the beginning or after the formation of the hexagonal phase.;We showed that DEER can be used to study the properties of various nanostructures in solution, specifically their volume. The feasibility of the method was initially tested on micelles of Pluronic block copolymers. After establishing the methodology we have applied DEER as a tool to follow the evolution of the solution nanostructures during the formation of KIT-6, a new stage in the reaction mechanism was detected which involves an increase in the hydrophobic core and a decrease in the aggregation number in the first ten minutes of the reaction. This was not observed from the Cryo-TEM and other EPR methods.;In addition to the above, within the cooperation with Prof. Ron Naaman from Weizmann Institute, we study the organization of organic monolayers on GaAs.;In conclusion, we can state that in this thesis we succeeded to tackle the complexity of the formation mechanism of mesoporous materials at two different length scales. Our research gave a full picture on the formation of mesoporous materials and thus gave a better synthetic control of these materials.
机译:有序介孔材料由于其独特的结构特性(包括纳米级有序通道)而引起了科学界的广泛兴趣。这些材料在各种技术领域都有潜在的应用,例如催化,膜,微电子学和传感器。这些材料的形成是由表面活性剂分子的胶束与无机氧化物(通常为二氧化硅)的前体的相互作用引发的,该无机氧化物的前体进一步聚合形成具有明确的孔结构和无定形壁的固体。详细介绍了以Pluronic嵌段共聚物为表面活性剂制备的两种类型的六方和立方材料的有趣反应机理。 Pluronic胶束的特征在于疏水性聚环氧丙烷核和亲水性聚环氧乙烷电晕。我们要解决的问题示例是:均匀胶束溶液如何转变为有序相?哪种相互作用与这种转变有关?;我们的工作集中在分子一级和介观二级这两个层面上发生的过程,这些过程是通过结合顺顺电子(EPR)和低温透射电子显微镜(cryo-TEM)进行研究的)技术。分子水平研究结合了原位和冷冻猝灭EPR光谱技术,这些技术适用于(少量)引入到反应混合物中的氮氧化物自旋探针。氮氧化物自由基在反应混合物中充当顺磁性探针。它们不会发生反应或不会影响反应产物,但会原位感应反应过程中环境中发生的变化。 EPR频谱提供有关探针动态的信息,该信息受其周围环境及其环境极性的影响。可以从电子自旋回波包络调制(ESEEM)技术获得精细的结构细节,例如胶束中水和添加剂的分布,该技术可测量电子自旋与附近核自旋的弱超超精细相互作用。双电子共振(DEER)可测量1.5--7 nm范围内的电子自旋之间的相互作用,可跟踪胶束大小和聚集数的变化。通过冷冻TEM,与以色列海法Technion的Ishii Talmon教授合作研究了反应过程中微观结构的演变;使用这些方法,形成了六方SBA-15材料和立方KIT-6材料的形成机理被探索了。这些表明,这些中孔材料的形成始于硅酸盐离子进入胶束的电晕。这是由溶液中存在的阴离子介导的电荷匹配或氢键驱动的。电晕区域中硅酸盐离子的水解和缩合将水从电晕中去除,并导致胶束曲率发生变化。这导致原始胶束形态的重排,主要是延长了胶束,随后将硅酸盐覆盖的胶束凝结成有序相。然后在SBA-15的情况下将其转换为有序六边形相,而在立方KIT-6的情况下,六方相将转换为立方相。该转化发生在六方相形成的开始或之后添加丁醇的情况下。我们证明了DEER可用于研究溶液中各种纳米结构的性质,特别是其体积。最初在Pluronic嵌段共聚物的胶束上测试了该方法的可行性。建立方法论后,我们将DEER作为一种工具来跟踪KIT-6形成过程中溶液纳米结构的演变,发现了反应机理的新阶段,该阶段涉及疏水核的增加和聚集的减少反应的前十分钟中的数字。从Cryo-TEM和其他EPR方法中未观察到这一点。;此外,在与Weizmann研究所的Ron Naaman教授合作下,我们研究了GaAs上有机单层的组织。在本文中,我们成功地解决了两种不同长度尺度下介孔材料形成机理的复杂性。我们的研究全面介绍了介孔材料的形成,因此对这些材料进行了更好的合成控制。

著录项

  • 作者

    Ruthstein, Sharon.;

  • 作者单位

    The Weizmann Institute of Science (Israel).;

  • 授予单位 The Weizmann Institute of Science (Israel).;
  • 学科 Chemistry Analytical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号