首页> 外文学位 >Yield and geodesic properties of random elasto-plastic materials .
【24h】

Yield and geodesic properties of random elasto-plastic materials .

机译:随机弹塑性材料的屈服和测地特性。

获取原文
获取原文并翻译 | 示例

摘要

Two topics, i.e., the scale effects and the geodesics of random heterogeneous materials will be discussed in this work.;The second topic is the geodesic (i.e., shortest path) character of strain fields occurring in elasto-plastic response of planar inclusion-matrix composites. The composites' spatially random morphology is created by generating the disk centers through a sequential inhibition process based on a poisson point field in plane. Both phases (inclusions and matrix) are elastic-plastic-hardening with the matrix being more compliant and weaker than the inclusions, and perfect bonding everywhere. A quantitative comparison of a response pattern obtained by computational micromechanics with that found only by mathematical morphology indicates that (i) the regions of plastic flow are very close to geodesics, and (ii) a purely geometric, and orders of magnitude more rapid than by computational mechanics assessment of these regions is possible.;When the separation of scales in random media does not hold, the representative volume element (RVE) of deterministic continuum mechanics does not exist in the conventional sense, and new concepts and approaches are needed. This subject is discussed here in the context of microstructures of two types - planar random chessboards, and planar random inclusion-matrix composites -- with microscale behavior being elastic-plastic-hardening (power-law). The microstructure is assumed to be spatially homogeneous and ergodic. Principal issues under consideration are those of yield and incipient plastic flow of statistical volume elements (SVE) on mesoscales, and the scaling trend of SVE to the RVE response on macroscale. Indeed, the SVE responses under uniform displacement (or traction) boundary conditions bound from above (respectively, below) the RVE response, and we show via extensive simulations in plane stress that the larger is the mesoscale, the tighter are both bounds. However, the mesoscale flows under both kinds of loading do not, in general, display normality. Also, with the limitation imposed by currently available computational resources, we do not recover normality (or even a trend towards it) when studying the largest possible SVE domains.
机译:这项工作将讨论两个问题,即尺度效应和随机异质材料的测地线。第二个主题是平面包含体的弹塑性响应中发生的应变场的测地线(即最短路径)特征复合材料。复合材料的空间随机形态是通过基于平面中的泊松点场的顺序抑制过程生成圆盘中心来创建的。这两相(夹杂物和基体)均进行了弹塑性硬化处理,基体比夹杂物更柔顺且较弱,并且在各处均实现了完美粘合。通过计算微力学获得的响应模式与仅通过数学形态学获得的响应模式的定量比较表明,(i)塑性流动区域非常接近于测地线,(ii)纯粹的几何形状,并且比通过当这些区域的计算力学评估不成立时,常规意义上不存在确定性连续体力学的代表体积元(RVE),因此需要新的概念和方法。本文在两种类型的微观结构(平面无规棋盘和平面无规夹杂物-矩阵复合材料)的上下文中讨论了该主题,其微观行为是弹塑性硬化(幂律)。假定微观结构在空间上是均质且遍历人体的。正在考虑的主要问题是中尺度上的统计体积元素(SVE)的产量和初期塑性流动,以及宏观尺度上SVE对RVE响应的尺度趋势。确实,在均匀位移(或牵引力)边界条件下,SVE响应从RVE响应的上方(分别在下方)限制,并且我们通过在平面应力中的大量模拟显示,中尺度越大,两个边界越紧密。但是,两种负载下的中尺度流动通常不会显示正常性。同样,由于当前可用的计算资源所施加的限制,在研究最大可能的SVE域时,我们无法恢复正态性(甚至是向其发展的趋势)。

著录项

  • 作者

    Li, Wei.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号