首页> 外文学位 >Lithospheric structure beneath Eastern Africa from joint inversion of receiver functions and Rayleigh wave velocities.
【24h】

Lithospheric structure beneath Eastern Africa from joint inversion of receiver functions and Rayleigh wave velocities.

机译:由接收器功能和瑞利波速度的联合反演,东非下方的岩石圈结构。

获取原文
获取原文并翻译 | 示例

摘要

Crust and upper mantle structure beneath eastern Africa has been investigated using receiver functions and surface wave dispersion measurements to understand the impact of the hotspot tectonism found there on the lithospheric structure of the region.;In the second part of this thesis, the seismic velocity structure of the crust and upper mantle beneath Ethiopia and Djibouti has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities to obtain new constraints on the thermal structure of the lithosphere. Crustal structure from the joint inversion for Ethiopia and Djibouti is similar to previously published models. Beneath the Main Ethiopian Rift (MER) and Afar, the lithospheric mantle has a maximum shear wave velocity of 4.1-4.2 km/s and extends to a depth of at most 50 km. In comparison to the lithosphere away from the East African Rift System in Tanzania, where the lid extends to depths of ∼100-125 km and has a maximum shear velocity of 4.6 km/s, the mantle lithosphere under the Ethiopian Plateau appears to have been thinned by ∼30-50 km and the maximum shear wave velocity reduced by ∼0.3 km/s. Results from a 1D conductive thermal model suggest that the shear velocity structure of the lithosphere beneath the Ethiopian Plateau can be explained by a plume model, if a plume rapidly thinned the lithosphere by ∼30--50 km at the time of the flood basalt volcanism (c. 30 Ma), and if warm plume material has remained beneath the lithosphere since then. About 45-65% of the 1-1.5 km of plateau uplift in Ethiopia can be attributed to the thermally perturbed lithospheric structure.;In the final part of this thesis, the shear-wave velocity structure of the crust and upper mantle beneath Kenya has been obtained from a joint inversion of receiver functions, and Rayleigh wave group and phase velocities. The crustal structure from the joint inversion is consistent with crustal structure published previously by different authors. The lithospheric mantle beneath the East African Plateau in Kenya is similar to the lithosphere under the East African Plateau in Tanzania. Beneath the Kenya Rift, the lithosphere extends to a depth of at most ∼75 km. The lithosphere under the Kenya Plateau is not perturbed when compared to the highly perturbed lithosphere beneath the Ethiopian Plateau. On the other hand, the lithosphere under the Kenya Rift is perturbed as compared to the Kenya Plateau or the rest of the East African Plateau, but is not as perturbed as the lithosphere beneath the Main Ethiopian Rift or the Afar. Although Kenya and Ethiopia have similar uplift and rifting histories, they have different volcanic histories. Much of Ethiopia has been affected by the Afar Flood Basalt volcanism, which may be the cause of this difference in lithospheric structure between these two regions.;In the first part of this thesis, I applied H-kappa stacking of receiver functions, and a joint inversion of receiver functions and Rayleigh wave group velocities to determine the crustal parameters under Djibouti. The two methods give consistent results. The crust beneath the GEOSCOPE station ATD has a thickness of 23+/-1.5 km and a Poisson's ratio of 0.31+/-0.02. Previous studies give crustal thickness beneath Djibouti to be between 8 and 10 km. I found it necessary to reinterprete refraction profiles for Djibouti from a previous study. The crustal structure obtained for ATD is similar to adjacent crustal structure in many other parts of central and eastern Afar. The high Poisson's ratio and Vp throughout most of the crust indicate a mafic composition, suggesting that the crust in Afar consists predominantly of new igneous rock emplaced during the late synrift stage where extension is accommodated within magmatic segments by diking.
机译:使用接收器函数和表面波频散测量方法对东非下方的地壳和上地幔结构进行了研究,以了解那里的热点构造对该地区岩石圈结构的影响。;第二部分,地震速度结构通过联合反演接收器函数和瑞利波群速度来研究埃塞俄比亚和吉布提下面的地壳和上地幔,以获得对岩石圈热结构的新约束。埃塞俄比亚和吉布提联合反演的地壳结构与以前发表的模型相似。在主要的埃塞俄比亚裂谷(MER)和阿法尔(Afar)下,岩石圈地幔的最大剪切波速度为4.1-4.2 km / s,并延伸至最大50 km的深度。与远离坦桑尼亚东非裂谷系统的岩石圈(盖延伸至约100-125 km的深度,最大剪切速度为4.6 km / s)相比,埃塞俄比亚高原下的地幔岩石圈似乎是变薄约30-50 km,最大剪切波速度降低约0.3 km / s。一维传导热模型的结果表明,如果玄武岩火山爆发时,一根烟柱使岩石圈迅速变薄约30--50 km,那么埃塞俄比亚高原以下岩石圈的剪切速度结构可以用烟柱模型来解释。 (大约30 Ma),并且此后是否在岩石圈下方留有温暖的羽状物质。在埃塞俄比亚1-1.5 km的高原隆升中,约有45-65%可归因于热扰动的岩石圈结构。在本文的最后部分,肯尼亚下方的地壳和上地幔的剪切波速度结构具有从接收机函数,瑞利波群和相速度的联合反演获得。联合反演的地壳结构与不同作者先前发表的地壳结构一致。肯尼亚东非高原下的岩石圈地幔类似于坦桑尼亚东非高原下的岩石圈地幔。在肯尼亚大裂谷之下,岩石圈延伸至最大约75公里的深度。与埃塞俄比亚高原下高度扰动的岩石圈相比,肯尼亚高原下的岩石圈不受扰动。另一方面,与肯尼亚高原或东非高原其他地区相比,肯尼亚大裂谷之下的岩石圈受到扰动,但不像埃塞俄比亚主裂谷或阿法尔之下的岩石圈扰动。尽管肯尼亚和埃塞俄比亚具有相似的隆升和裂谷历史,但它们具有不同的火山史。埃塞俄比亚的大部分地区都受到了阿法尔洪水玄武岩火山活动的影响,这可能是这两个地区岩石圈结构差异的原因。在本文的第一部分,我采用了接收器功能的H-kappa叠加方法,联合接收函数和瑞利波群速度反演以确定吉布提条件下的地壳参数。两种方法给出一致的结果。 GEOSCOPE台站ATD下的地壳厚度为23 +/- 1.5 km,泊松比为0.31 +/- 0.02。先前的研究得出吉布提以下的地壳厚度在8至10公里之间。我发现有必要从先前的研究中重新解释吉布提的折射曲线。 ATD获得的地壳结构与阿法尔中部和东部许多其他地区的邻近地壳结构相似。整个地壳中的高泊松比和Vp均表示镁铁质成分,这表明阿法尔地区的地壳主要由新近火成岩阶段形成的新火成岩组成,在该岩浆岩中通过围堤扩展了岩浆层。

著录项

  • 作者

    Dugda, Mulugeta Tuji.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号