首页> 外文学位 >Electrical detection, mechanisms, and analysis of biological enzyme activity in live cells.
【24h】

Electrical detection, mechanisms, and analysis of biological enzyme activity in live cells.

机译:电检测,机制和活细胞中生物酶活性的分析。

获取原文
获取原文并翻译 | 示例

摘要

Biological organisms are likely the most complex entities in the universe. The field of biophysics has scarcely begun to elucidate their inner workings from a physics perspective. Nevertheless, it is clear that electric charges, in the form of cations, anions, and charged groups on enzymes, play vital roles in all the activities that constitute life. These charges both generate and respond to time-varying electric fields. This doctoral dissertation is the outgrowth of efforts to: (1) develop sensors of biological enzyme activity, based on the linear (impedance) and nonlinear (harmonic) responses of cell suspensions to applied sinusoidal electric fields; (2) utilize mathematical tools to analyze the nonlinear behaviors of biological systems; and (3) better understand the biophysics of key biological motors, including the mitochondrial adenosine triphosphate (ATP) producing enzyme ATP synthase and other rotary motors.;In the area of sensor development, our observations of higher harmonics generated by suspensions of live cells are attributed to field-induced conformational changes in membrane proteins. Their frequency- and time-dependences exhibit features that correlate with the consumption of glucose and oxygen. Here, these harmonics are analyzed by incorporating the washboard potential model within the Volterra analysis method, enabling the development of nonlinear harmonic spectroscopy as a powerful new biophysics tool. Finally, a promising new method is developed, to detect cellular and mitochondrial activity at the single-cell level, by performing harmonic spectroscopy measurements using the micropipette electrodes typically employed in patch clamp measurements.;Given the complexity and intrinsic nonlinearity of biological systems, this project has utilized unconventional analysis techniques that incorporate the washboard potential model, the Volterra series method (a generalization of the Fourier series to nonlinear systems), and perturbation theory. Experiments suggest that the energy landscape of F1-ATP synthase (F1) is a washboard potential. Thus, by combining an electric field driven torque model of F0-ATP synthase (F0), recently proposed by Prof. J. Miller, with a washboard potential model, the author of this thesis has generated theoretical predictions of ATP production rate vs. mitochondrial membrane potential, which are found to be in excellent agreement with experiment.
机译:生物有机体可能是宇宙中最复杂的实体。生物物理学领域几乎没有从物理学的角度阐明它们的内部运作。尽管如此,很明显,电荷以阳离子,阴离子和酶上带电基团的形式在构成生命的所有活动中都起着至关重要的作用。这些电荷既产生并响应随时间变化的电场。该博士论文是努力的结果:(1)基于细胞悬液对施加的正弦电场的线性(阻抗)和非线性(谐波)响应,开发生物酶活性传感器。 (2)利用数学工具分析生物系统的非线性行为; (3)更好地理解关键生物马达的生物物理,包括线粒体三磷酸腺苷(ATP)合成酶ATP合酶和其他旋转马达。;在传感器开发领域,我们对活细胞悬浮液产生的高次谐波的观察是归因于田间诱导的膜蛋白构象变化。它们的频率和时间依赖性表现出与葡萄糖和氧气消耗相关的特征。在这里,通过将搓衣板电势模型纳入Volterra分析方法中来分析这些谐波,从而使非线性谐波光谱学发展成为一种功能强大的新型生物物理学工具。最后,通过使用通常用于膜片钳测量的微量移液器电极进行谐波光谱测量,开发了一种有前途的新方法来检测单细胞水平的细胞和线粒体活性;鉴于生物系统的复杂性和内在非线性,该项目利用了非常规分析技术,该技术结合了搓板电位模型,Volterra级数方法(傅里叶级数对非线性系统的推广)和扰动理论。实验表明,F1-ATP合酶(F1)的能量结构具有搓板潜力。因此,通过将J. Miller教授最近提出的F0-ATP合酶(F0)的电场驱动转矩模型与搓板电势模型相结合,本文的作者得出了ATP生产率与线粒体关系的理论预测膜电位,与实验非常吻合。

著录项

  • 作者

    Infante, Hans.;

  • 作者单位

    University of Houston.;

  • 授予单位 University of Houston.;
  • 学科 Engineering Biomedical.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号