首页> 外文学位 >Stability and biocompatibility of porous silicon and porous alumina for cell and biomolecular sensing.
【24h】

Stability and biocompatibility of porous silicon and porous alumina for cell and biomolecular sensing.

机译:用于细胞和生物分子传感的多孔硅和多孔氧化铝的稳定性和生物相容性。

获取原文
获取原文并翻译 | 示例

摘要

Inorganic porous materials are the subject of much investigation for a variety of bio-application including filtration, implant materials, drug delivery devices, and medical diagnostics. Great potential lies in integrating biological systems and inorganic materials for diagnostics and sensing devices. An inorganic sensing device must be able to respond to information transmitted across the biological and inorganic interface. In this way, transduction of information from the biological system can be reported. Biocompatibility and stability is a crucial first concern when combining inorganic porous materials and the physiological environment. The central theme of this work is to combine stable, biocompatible, inorganic porous materials for interrogation of biological events in real time and without extraneous labels. In other words, this dissertation is a combination of studies toward a 'smart' Petri dish; a substrate that can sense biological events without interference or exhibiting any ill effect on living cells. Results from these studies contribute to using porous silicon and porous alumina as cell culturing substrates or implant materials while simultaneously functioning as a sensor.;The first chapter introduces optical sensors and how they are applied for label-free biosensing. Porous Si is one such material that can be used for sensitive transduction of biological interactions. Construction of the material is presented and the optical properties of porous thin films are discussed.;The second chapter addresses the biocompatibility of porous Si and the degree of stability it has in physiological environments. The attachment and viability of a primary cell type to porous Si samples containing various surface chemistries is reported. The ability of the porous Si films to retain their optical reflectivity properties relevant to molecular biosensing is assessed.;An optical transduction method for monitoring cell viability using porous Si photonic crystals is described in chapter three. The substrate is chemically modified to optimize stability and biocompatibility, and then applied in mammalian and bacteria cell culture environments for real-time reporting of cellular health. The method monitors the intensity of scattering by cells of the optical spectrum from the underlying photonic crystal. In the mammalian cell demonstration, cell death by toxin exposure is reported in advance of traditional viability assays. In the bacteria example, cell death by virus is monitored.;Chapter four presents a second method for monitoring cell viability using porous Si sensors. The method uses optical interferometry for reporting changes in refractive index as biological material enters the porous framework. Limitations of the optical interrogation technique when using turbid solutions of bacteria cells are described.;The instability of porous Si in physiological environments limits its potential for long-term optical sensing, and other porous inorganic materials are worth pursuing. The last chapter of the dissertation describes using porous alumina as an optical interferometer for biosensing. The optical transduction method used for biosensing with porous alumina is described, demonstration of the method as an immunosensor is reported, and the direction of future work is discussed.
机译:无机多孔材料已成为许多生物应用研究的主题,包括过滤,植入材料,药物输送装置和医学诊断。集成生物系统和无机材料用于诊断和传感设备的巨大潜力。无机传感设备必须能够响应通过生物和无机界面传输的信息。这样,可以报告来自生物系统的信息转导。当结合无机多孔材料和生理环境时,生物相容性和稳定性是至关重要的首要问题。这项工作的中心主题是将稳定的,生物相容性的无机多孔材料组合在一起,以实时地查询生物事件,而没有多余的标记。换句话说,本文是对“智能”培养皿的研究的结合。可以感应生物事件而不会受到干扰或对活细胞表现出任何不良影响的底物。这些研究的结果有助于使用多孔硅和多孔氧化铝作为细胞培养基质或植入材料,同时充当传感器。第一章介绍了光学传感器及其在无标签生物传感中的应用。多孔硅是一种可以用于生物相互作用的敏感转导的材料。介绍了该材料的结构,并对多孔薄膜的光学性质进行了讨论。第二章探讨了多孔硅的生物相容性及其在生理环境中的稳定性。据报道,原代细胞类型对包含各种表面化学物质的多孔硅样品的附着和活力。评估了多孔硅膜保持与分子生物传感有关的光反射特性的能力。第三章介绍了一种使用多孔硅光子晶体监测细胞活力的光学转导方法。化学修饰底物以优化稳定性和生物相容性,然后将其应用于哺乳动物和细菌细胞培养环境中,以实时报告细胞健康状况。该方法监测来自下面的光子晶体的光谱的细胞的散射强度。在哺乳动物细胞演示中,在传统的活力测定之前,已有人报道了毒素暴露引起的细胞死亡。以细菌为例,通过病毒监测细胞死亡。第四章介绍了使用多孔硅传感器监测细胞活力的第二种方法。该方法使用光学干涉仪报告生物材料进入多孔框架时折射率的变化。描述了使用细菌细胞的混浊溶液时光学询问技术的局限性。多孔硅在生理环境中的不稳定性限制了其长期光学传感的潜力,其他多孔无机材料也值得追求。论文的最后一章描述了使用多孔氧化铝作为用于生物传感的光学干涉仪。描述了用于多孔氧化铝生物传感的光转导方法,报道了该方法作为免疫传感器的论证,并讨论了未来的工作方向。

著录项

  • 作者

    Alvarez, Sara D.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Chemistry Analytical.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号